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1 Introduction

New technologies have raised concerns about unequal labor market outcomes for

centuries. For instance, the invention of cotton-spinning machinery in the 19th century

displaced handicraftsmen while increasing demand for machine operators. Recent tech-

nologies, such as computers and artificial intelligence, are under intense scrutiny for their

potential to displace many occupations while benefiting others. Accurate and systematic

measurement of these innovations is essential to understand their impacts and inform

public policy.

Previous papers addressing this issue have focused on a few significant episodes of

new technologies, often embedded in capital, and measured their varied exposures. Au-

tor and Dorn (2013) analyze the rise of computers that substitute routine tasks, while

Acemoglu and Restrepo (2022) investigate the role of robots that replace workers in man-

ufacturing industries. However, focusing on a few types of capital goods can overlook a

significant fraction of capital that reflects innovation. Robots and computers accounted

for a small fraction of capital expenditure, with 0.7% and 3% of equipment expenditures

in 2019, respectively.1 Therefore, a wider range of capital needs to be examined to capture

innovation embodied in capital more accurately.

This paper constructs a measure of capital-embodied innovation (CEI) across a com-

prehensive set of capital goods at the occupation level and examines its heterogeneous

effects across different occupations. We first use O*NET to assign capital goods to occupa-

tions and classify them into two types based on their similarity to the occupational tasks.

If a capital good performs a function similar to the tasks of an occupation, it is classified

as task-similar for that occupation. Conversely, if the function of a capital good differs

from occupational tasks but is still used by occupations, it is classified as task-dissimilar.

This classification is made by computing text similarity scores between descriptions of

capital goods from Wikipedia and occupational task statements from O*NET. Then, CEI

is measured by matching patents with capital goods based on text similarities between
1The computer expenditure share is from BEA fixed assets, and the robot share is from the 2019 Annual

Capital Expenditure Survey of the Census Bureau. Even when combined with related equipment, such as
mainframes and storage devices, computer-related equipment makes up 9.7% of total capital expenditures.
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abstracts of patents and Wikipedia articles on capital goods. Equipped with this mea-

sure, we quantify the role of CEI in changes in the labor market across occupations using

a structural model.

Linking new technologies with capital offers a bridge between the literature on capital-

embodied technical changes and the labor-market effects of innovation. Caunedo et al.

(2023) recently evaluate the technical changes embodied in capital at the occupation level

based on capital prices. Our method helps identify a source of declines in capital prices

associated with new technologies. Changes in capital prices can be due to various fac-

tors, such as innovation, trade, and changes in market structure. Isolating technological

factors behind these price changes is crucial for recent discussions on the impact of R&D

subsidies on inequality (Bloom et al., 2019).

At the same time, by matching new technologies with capital, we can distinguish

whether new technologies affect labor demand by accelerating substitution toward cap-

ital or increasing demand for occupation services. Kogan et al. (2023) and Autor et al.

(2024) focus on patents closely related to occupational tasks or micro-titles. Our analy-

sis extends this approach by introducing capital goods as intermediaries between inno-

vation and labor. By doing so, we can measure how the price and quantity of capital

goods change for each occupation along with the wage or employment. Whether innova-

tion promotes substitution with capital or the overall production of occupational services

yields different implications on the labor share.

Furthermore, using capital goods as intermediaries allows us to link more specific

technologies to each occupation. Rather than matching patents directly to occupational

tasks or micro-titles, as in Kogan et al. (2023) and Autor et al. (2024), we leverage the

occupation-level list of capital goods to identify which technologies are relevant for each

occupation. Occupational task descriptions are often broad, using terms like “controlling

machines and processes”, which can obscure important differences. For example, interior

designers and fashion designers have identical task descriptions, yet their capital goods

differ substantially: only 6 out of 16 capital goods used by interior designers are also used

by fashion designers. For example, using “sewing machines” as intermediaries, patents

2



related to sewing technologies can be accurately identified as relevant innovations for

fashion designers.

We begin by building a general equilibrium model in which occupational service is

produced using task-similar and task-dissimilar capital alongside occupational labor. The

two types of capital are allowed to have different elasticities of substitution with labor.

Depending on the relative magnitude of the elasticity of substitution, changes in the cost

of capital can increase or decrease the demand for labor at the occupation level.

The parameters of this model are estimated using a linear regression equation derived

from the first-order conditions of cost minimization for occupational service production.

To identify the effect of CEI alongside elasticities of substitution, we devise shift-share

instruments from academic publications, capital imports, and immigration trends from

Latin American countries. An increase in imported capital goods raises the capital expen-

diture share in occupations that intensively use those goods, while increased immigration

from Latin America increases labor supply disproportionately in occupations where the

immigrants have a comparative advantage. Additionally, a rise in publications within an

academic field spurs innovation activities in related patent classes.

In our framework, CEI affects occupational labor demand in two ways: by reducing

the user costs of capital and impacting the demand for occupational services. The es-

timated elasticities of substitution suggest that lower user costs associated with CEI in

task-similar capital reduce occupational labor demand, whereas those in task-dissimilar

capital increase it. Furthermore, CEI in task-similar capital decreases demand for occupa-

tional services, while CEI in task-dissimilar capital increases it.

We find that between 1980 and 2015, occupations were heterogeneously exposed to

CEI. First, the magnitude of CEI varied between occupations. CEI in task-dissimilar cap-

ital (CEI-d) was biased toward abstract and non-routine occupations with high labor

shares and wages, whereas CEI in task-similar capital (CEI-s) favored non-abstract oc-

cupations with low labor shares and wages. Second, occupations experienced changes

in capital intensity, altering the impacts of CEI. Non-abstract, routine occupations with

low labor shares became relatively more intensive in task-similar capital, while abstract,
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high-wage occupations became more intensive in task-dissimilar capital.

To quantify the role of CEI on various labor market trends, we conduct counterfactual

exercises by fixing the measure of patents at their levels in 1980. First, we examine the

role of CEI in task-biased changes. Our results suggest that CEI accounts for 18–59% of

employment growth and almost the entire wage growth that favors abstract occupations.

Likewise, CEI produces 8–27% and 70–79% of the bias against routine occupations in

wage and employment growth, respectively. Second, CEI contributes to the decline in la-

bor share, generating 86–89% of the observed decline between 1980 and 2015. Lastly, CEI

helps explain job polarization, accounting for 7–27% of employment growth and 72–79%

of wage growth for high-wage occupations in the top quintile of the 1980 wage distribu-

tion.

Related Literature

This paper first contributes to the literature on task-biased technical changes and job

polarization (e.g., Autor et al., 2006; Goos and Manning, 2007; Lee and Shin, 2017; Bárany

and Siegel, 2018; Keller and Utar, 2023). Most papers in this literature, including Au-

tor and Dorn (2013), Goos et al. (2014), Michaels et al. (2014), and Acemoglu and Restrepo

(2022), study the emergence of specific capital goods such as computers, information tech-

nology equipment, and robots. They find that new technologies in these capital goods

have reduced the demand for routine and non-abstract occupations. Since middle-wage

occupations are more likely to be routine, these changes contributed to job polarization.

Our research extends these works by developing a measure of innovation for a compre-

hensive range of capital goods at the occupational level. Additionally, this paper distin-

guishes technological factors from other drivers of capital goods prices, which helps to

understand the uneven impacts of innovation policies.

Second, this paper relates to the broader literature that studies the complementarity

between capital and worker skills (Griliches, 1969; Goldin and Katz, 2008; Hornstein et

al., 2005). Most papers assume that workers from different skill groups have different

elasticities of substitution with capital, and the magnitude of elasticity determines how
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labor demand for a worker group responds to capital accumulation (Krusell et al., 2000;

Berlingieri et al., 2022; Caunedo et al., 2023). In contrast, our analysis categorizes capital

goods into two types and allows these types to have different elasticities of substitution

with labor. This approach captures a rich heterogeneity in complementarity between cap-

ital and labor with only two elasticities of substitution.

Lastly, this paper contributes to a growing literature that applies textual analysis to

patent data to measure innovation (Argente et al., 2023; Hémous et al., 2025; Zhestkova,

2021; Bloom et al., 2021; Kelly et al., 2021; Mann and Püttmann, 2023). Many existing pa-

pers match patents similar to task descriptions of occupations to measure exposure to new

technologies. Webb (2019) matches occupations with technologies related to artificial in-

telligence and robots, while Kogan et al. (2023) include a broader set of new technologies

for matching. Autor et al. (2024) categorize labor-augmenting and labor-saving technolo-

gies by matching patents with micro titles and tasks of occupations. Recently, Hémous

et al. (2025) use patent texts to identify patent classes related to automation technologies.

We introduce “Tools Used” data from O*NET to match patents with capital goods used

by occupations. This approach allows our innovation measure to include new technolo-

gies not similar to occupational tasks but utilized by occupational workers in the form of

capital. Our results indicate that these technologies also reallocate labor demand between

occupations and are quantitatively as important as new technologies similar to occupa-

tional tasks.

The remainder of the paper is organized as follows. Section 2 outlines the empirical

framework. Section 3 describes the data used for the analysis and the procedure to con-

struct CEI measures. Section 4 discusses the estimation strategy and the results. Section 5

presents the results from counterfactual exercises. Section 6 concludes.
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2 Empirical Framework

2.1 Overview

The economy is static and consists of firms and workers. Final goods are produced

using industrial outputs. A representative firm in each industry combines occupational

services to create industrial outputs. For example, an aerospace company integrates oc-

cupational services from aerospace engineers, engine mechanics, and janitors to produce

its industrial output. These occupational services are produced with labor and capital,

where capital is a bundle of individual capital goods. The labor of engine mechanics, for

example, is combined with capital bundles that include tools such as pressure indicators

and wire cutters.

Two types of capital enter the production of occupational services. First, task-similar

capital consists of tools that perform similar functions as occupational tasks. In contrast,

capital goods in task-dissimilar capital bundles fulfill functions distinct from occupational

tasks but essential to producing occupational services. One capital good can be task-

similar for one occupation but task-dissimilar for another. For instance, an engine test

stand is considered task-similar capital for engine mechanics involved in engine mainte-

nance. However, the same engine test stand is categorized into task-dissimilar capital for

aerospace engineers designing new aircraft. We allow these two types of capital to have

different elasticities of substitution with labor.

Capital is bundled from individual capital goods and is supplied elastically at the unit

cost, which is described below. Different occupations work with capital bundles with

different compositions of capital goods. In addition, each industry requires a different

mix of capital goods for a given occupation. Thus, the composition and user costs of

capital bundles vary by occupation and industry.

The labor market is distinguished by occupations but not by industries. Thus, the

wage is set at the occupation level, and workers are indifferent across industries within

an occupation. Workers select the occupation that offers them the highest utility, con-

sidering wages and idiosyncratic preferences. Firms in each industry hire workers of
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different occupations. The equilibrium occupational wages clear all occupational labor

markets.

In this economy, CEI shifts occupational labor demand by changing the user costs

of capital goods and, thereby, the user costs of capital bundles. Moreover, CEI directly

shifts the relative demand for occupational services. This assumption is motivated by the

idea that innovation can alter the role of occupational services in industrial production,

regardless of capital costs.

2.2 Capital Bundle

Competitive capital producers combine capital goods to make occupation- and industry-

specific bundles of task-similar and task-dissimilar capital, kjio, where j ∈ s, d denotes

capital type, with s representing task-similar capital and d representing task-dissimilar

capital, for industry i and occupation o. Capital goods are combined to produce kjio as

follows:

kjio = f(xjio1, · · · , xjioN) ,

where xjion is the quantity of capital goods n, and f(·) is a constant-return-to-scale aggre-

gator.2

The user cost of the capital bundle is determined by the zero profit condition.

rjio =
∑
n∈Njo

λk
jion

xjion

kjio
, (1)

where λk
jion is the user cost of capital goods, and Njo is a set of capital goods that are cat-

egorized as group j for occupation o. Notice that this condition holds whenever the pro-

duction of a capital bundle exhibits a constant-returns-to-scale property, the zero-profit

condition holds, and xjion/kjio is the quantity share of capital goods n.

Later, we will measure CEI using the number of patents matched to a capital good

used by an occupation in an industry, # Patentjon, which will be described in more de-

2In the counterfactual analysis, we assume f(·) is a CES aggregator with the elasticity of substitution
with ϕ = 1.13, following Caunedo et al. (2023).
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tail in Section 3.3. If patents change the user costs of capital goods isoelastically, i.e.,

d log λk
jion ∝ γPd log

(
# Patentjon

)
, we can take the total derivative of rjio to get the follow-

ing equation.

d log rjio = γP
∑
n

λk
jionxjion

rjiokjio
d log # Patentjon︸ ︷︷ ︸

=:d logPjio

(2)

Equation (2) defines the occupation-level CEI measure, d logPjio. We approximate d logPjio

with discrete differences between 1980 and 2015 as in the following equation.

d logPjio ≈ ∆ logPjio ≡
∑
n

ω̄jion∆ log # Patentjon (3)

In this equation, ω̄jion is the average expenditure share on capital goods between 1980

and 2015, and ∆ log # Patentjon is the difference in the number of patents between 1980

and 2015. A negative γp implies that the user costs of capital decrease with CEI. It is

important to note that the coefficient γp does not vary across similar and dissimilar capital

groups. From now on, the average patent change for the capital bundle, ∆ logPjio, is the

measure of CEI-j, where j = s for similar capital and j = d for dissimilar capital.

2.3 Labor Demand

Aggregate output Y is a Cobb-Douglas composite of industrial outputs.

Y =
∏
i

Y αi
i .

Industrial output in industry i, Yi, aggregates occupational services with a constant elas-

ticity of substitution, σ.

Yi =

(∑
o

µ
1
σ
ioy

σ−1
σ

io

) σ
σ−1

, (4)
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where µio is the occupation demand shifter for industry i, occupation o. Occupational

service yio is produced with capital and labor as in the following equations.

Θio =

(
z

1
ρs
siok

ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs
ρs−1

, (5)

yio =

(
z

1
ρd
diok

ρd−1

ρd
dio +Θ

ρd−1

ρd
io

) ρd
ρd−1

. (6)

In these equations, ksio denotes task-similar capital with its productivity, zsio, and kdio

is task-similar capital with its productivity, zdio. lio denotes labor inputs in industry i

and occupation o. As in Krusell et al. (2000), the nested CES structure allows different

substitutability between production inputs. ρs and ρd are the elasticity of substitution of

labor with task-similar and task-dissimilar capital, respectively. This structure implies

that the elasticity of substitution between task-dissimilar capital and task-similar capital

is also ρd.3

A representative firm of industry i chooses labor and capital inputs to minimize the

production costs, given the user costs of task-similar and task-dissimilar capital, rsio and

rdio, and the occupational wage wo. The first-order conditions are described as the follow-

ing equations.

rsio
wo

= z
1
ρs
sio

(
ksio
lio

)− 1
ρs

, (7)

rdio
wo

= Θ
ρs−ρd
ρsρd

io z
1
ρd
diok

− 1
ρd

dio l
1
ρs
io , (8)

wo

wo′
=

(
µio

µio′

) 1
σ
(
yio
yio′

)− 1
σ
+ 1

ρd

(
Θio

Θio′

) ρd−ρs
ρsρd

(
lio
lio′

)− 1
ρs

. (9)

Combining these three equations gives the following equation that governs the relative

3In Appendix D.2, we explore an alternative specification in which labor and task-dissimilar capital are
aggregated first, followed by aggregation with task-similar capital. The estimation results remain quantita-
tively similar.
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labor demand within industry i.

wo

wo′
=

(
µio

µio′

) 1
σ
(
ỹio
ỹio′

)− 1
σ
+ 1

ρd Θ̃
ρd−ρs
ρsρd

io

Θ̃
ρd−ρs
ρsρd

io′

(
lio
lio′

)− 1
σ

. (10)

In these equations, Θ̃io = Θio/lio and ỹio = yio/lio are defined as the labor efficiencies for

the inner and the outer composites of occupational service production. In equilibrium,

they can be expressed as follows.

Θ̃io =

(
zsio

(
rsio
wo

)1−ρs

+ 1

) ρs
ρs−1

, (11)

ỹio = Θ̃
ρs−ρd

ρs
io

(
zdio

(
rdio
wo

)1−ρd

+ Θ̃
ρd−1

ρs
io

) ρd
ρd−1

. (12)

Θ̃io and ỹio decrease unambiguously with rsio and rdio, respectively. In other words, lower

user costs of capital increase the labor efficiencies for the inner and outer composites of

occupational service production.

Equation (10) shows that the relative magnitudes of the elasticities of substitution

shape how capital-embodied changes affect labor demand between occupations, consis-

tent with Caunedo et al. (2023). A decrease in user costs of task-dissimilar capital in-

creases ỹio and raises demand for occupational services through scale effects. If σ > ρd,

the demand rises more elastically than the substitution toward task-dissimilar capital,

increasing the relative labor demand.

Likewise, if ρs > σ, the substitution toward task-similar capital is stronger than the

overall demand increase for occupational services. An increase in Θ̃io from lower user

costs of task-similar capital raises both ỹio and Θ̃io. Since d log ỹio/d log Θ̃io < 1, ρs > σ im-

plies that lower user costs of task-similar capital reduce relative labor demand. Thus,

in this framework, the effect of CEI on user costs of capital depends on the relative

magnitudes of elasticities between capital and labor, as well as across occupational ser-

vices.
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We also allow the CEI to directly affect the demand for occupational services. We

assume that the same CEI measure in Equation (2), d logPjio, changes the demand shifter,

µio, as in the following equations.

d log µio = γsd logPsio + γdd logPdio. (13)

A positive γj implies that the demand for occupational services increases with CEI-j (j ∈

{s, d}), even after taking into account its effect through substitution with capital in Θio

and ỹio. This can happen when the quality of occupational service increases or when

the scope of the production process implemented by an occupation increases with CEI.

Additionally, the demand shifter margin addresses the effect of CEI that the nested CES

structure cannot capture.

2.4 Labor Supply and Equilibrium

The labor supply side is modeled with a standard structure of occupation choice. Let

L denote the number of ex-ante homogeneous workers. Workers observe the wage of each

occupation determined in the market, wo, occupation-specific utility ξo, and idiosyncratic

utility realized for each occupation ζ . The worker chooses an occupation that gives the

highest utility. All workers receive the same wage and utility for any given occupation.

Consequently, once they choose an occupation, they are indifferent across industries. The

occupation choice problem can be written as follows:

o∗ = argmax
o

{logwo + log ξo + ζ} .

Assuming that ζ follows an i.i.d. Type 1 Extreme Value Distribution with scale parameter

1/η, the following equation determines the supply of occupational labor.

Lo

L
=

exp(η logwo + ηξo)∑
o′ exp(η logwo′ + ηξo′)

. (14)
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The labor market equilibrium consists of occupational wages that equate the supply of

labor with the demand in each occupational labor market, which consists of demands at

the industry level for each occupation.

3 Data and Measurement

3.1 Data

The data from O*NET “Tools Used” serve as our primary reference for identifying

capital goods with which each occupation works.4 O*NET compiles a comprehensive list

of machines or equipment vital to occupational roles (Dierdorff et al., 2006). To illustrate,

security managers use capital goods such as security control systems, alarm systems, and

video monitors. The data encompass 4,180 distinct capital goods used by 775 occupa-

tions coded in the 2010 Standard Occupational Classification Code (SOC). In particular,

each capital good is associated with a title and a corresponding United Nations Standard

Products and Services Code (UNSPSC).

We use patent data from the United States Patent and Trademark Office (USPTO) to

measure innovation on these capital goods.5 This dataset includes all the patents regis-

tered in the US from 1970 to 2015. The exercise uses the application year, title and abstract

of patents.6 In total, we have 6.1 million utility and plant patents. Design patents are

excluded to focus on quality improvement.

For occupational employment at the industry level in 1980 and 2015, we used micro-

data from the 1980 Decennial Census and the American Community Survey (ACS) from

2015 to 2019 for observations in 1980 and 2015, respectively. The data is downloaded from

the Integrated Public Use Microdata Series (IPUMS). ACS samples from multiple surveys

4This study uses version 25.0, which was updated in August 2020, whereas Caunedo et al. (2023) use the
Dictionary of Occupational Titles and different versions of “Tools Used” to capture changes in capital goods
at the occupation level. We set the version of the “Tools Used” data to be consistent with the Wikipedia data,
which is also from 2020. IV estimation addresses the measurement errors associated with changes in capital
goods over time.

5The bulk file is downloaded from https://patentsview.org.
6The application year is used instead of the grant year since it is closer to the actual innovation year.
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are used to increase the size of the samples in each occupation by industry. Employment

is measured by the number of workers with the occupation and industry codes in the

1990 Census classification system harmonized by the IPUMS. Each observation is used

with sampling weights from the Census Bureau. Our analysis uses prime-aged work-

ers between the ages of 25 and 54. The Decennial Census and the ACS are also used to

construct immigrant supply instruments in Section 4.

Occupational wages are sourced from the microdata for the Annual Social and Eco-

nomic Supplement (CPS-ASEC) of the Current Population Survey. The wage is measured

by the average weekly labor earnings and computed as the annual labor income divided

by the number of weeks worked. Observations in 1980–1984 and 2015–2019 are used to

calculate wages in 1980 and 2015, respectively.7

To account for heterogeneous labor productivity between workers with different ob-

servable characteristics, we residualize wages using Mincerian regression, which includes

age, education level, race, and year dummies, as in Berlingieri et al. (2022). For this re-

gression, we only consider full-time male workers who worked 40 weeks or more in the

preceding year. Samples with zero or missing information on individual characteristics

are excluded. Furthermore, observations with a nominal hourly wage below 50% of the

federal minimum wage for the given year are omitted.

The 2010 SOC on the O*NET data is mapped to the OCC1990 variable using cor-

respondence between the OCC1990 variables and the 2010 SOC in the ACS 2012-2018.

Likewise, the IND1990 variable is converted to the NAICS code using the correspondence

between the IND1990 and the NAICS in the ACS. Then, the NAICS in the ACS is aggre-

gated to the 63 NAICS industries in the National Income and Product Accounts (NIPA)

by the Bureau of Economic Analysis (BEA).

For capital stocks and user costs of capital at the occupation and industry level, we use

fixed- and current-cost capital estimates from the BEA. Fixed-cost estimates are measured

7The CPS-ASEC is not used to measure employment at the occupation and industry level because of its
small sample size. The CPS-ASEC is not used to measure employment at the occupation and industry level
because of its small sample size. We do not use the wage variables from the ACS and the Decennial Census
because the data do not include occupation information for last year.
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in the 2012 US dollar at the industry and the NIPA capital category level. Fixed-cost

capital serves as the quantity of capital goods, and the ratio between current- and fixed-

cost estimates is used to measure the price of capital goods in the calculation of user

costs.

We introduce additional data sets to construct instrumental variables with academic

publications and capital imports, which are described in more detail in the Appendix

C. First, we use patent citations to academic publications from Marx and Fuegi (2020)

and the number of publications from Microsoft Academic Graph (MAG, Sinha et al.,

2015). Combining these two datasets allows us to gauge the knowledge flow from aca-

demic research to patents and offers variations that affect patenting activities. Second, we

work with UN Comtrade data to measure import volume at the commodity level.8 This

information helps us capture increases in capital supply at the capital good level from

international trade.

3.2 Identifying Task-Dissimilar versus Task-Similar Goods

For each occupation, we categorize the capital goods into two categories: task-similar

capital and task-dissimilar capital. The capital whose function closely aligns with the

tasks of an occupation is categorized as task-similar. In contrast, the capital used by

an occupation whose function does not mirror the occupational tasks is labeled as task-

dissimilar. One capital good may be task-similar for one occupation and task-dissimilar

for another, reflecting the heterogeneity of tasks across various occupations. At this point,

we only allow for different degrees of substitution elasticity between the two types of cap-

ital and labor and do not presuppose their relationships with occupational labor demand

before the estimation.

The existing literature that matches occupations with patents based on text similar-

ity (e.g., Webb, 2019; Kogan et al., 2023) often finds a strong labor-displacement effect of

innovations. Our classification is motivated by the negative effect of new technologies

8Comtrade data for 1980 and 2015 are available at the SITC Rev. 2 and HS 1992 levels, respectively. We
converted SITC Rev. 2 in HS 1992 using a crosswalk file provided by the UN Statistics Division and then
manually converted it to the NIPA code.
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that perform tasks similar to those of occupations. If new technologies conduct functions

that differ from occupational tasks but are used by the occupation, these technologies

may have different effects. The occupation-level list of capital goods provided by O*NET

serves as a convenient intermediary to identify the new technologies used by each occu-

pation.

Specifically, the classification exploits the degree of similarity of text between the tasks

associated with an occupation and the descriptions of capital goods. We use data from

“Task Statements” in O*NET for occupational tasks.9 For example, a security manager has

tasks such as “Respond to medical emergencies, bomb threats, fire alarms, or intrusion

alarms, following emergency response procedures.” For descriptions of capital, we use

Wikipedia articles, which offer product-level descriptions for text analysis (Argente et

al., 2023). Utilizing the Wikipedia Application Programming Interface (API), we locate

Wikipedia pages for 1,825 among 4,180 capital goods listed.10

We then compute the text similarity between Wikipedia articles describing capital

goods and occupational tasks by counting the common words. A standard procedure

from the natural language processing literature is used to prepare the texts for our analy-

sis. First, we remove stopwords, words that are insignificant in delivering the content. For

example, “is,” “where,” and “have” are classified as stopwords. Removing them prevents

erroneous matches between two texts solely based on shared functional words rather than

substantive content. Then, words are lemmatized to standardize word forms. For exam-

ple, “generating” or “generated” is changed to “generate.” This step ensures that words

with analogous meanings, though in different forms, align appropriately.

Next, we calculate the pairwise similarity between tasks and capital goods. Specifi-

cally, each text is vectorized to compute cosine similarity, which quantifies the share of

overlapped words between two texts. Words are weighted by the frequency-inverse doc-

ument frequency (TF-IDF). The weight of words i in document j, represented as wij, is

9We use the 25.0 version, updated in August 2020. On average, each occupation has 23 tasks.
10The Wikipedia data was downloaded on 02/28/2021. Table A1 details the proportion of tools found in

Wikipedia, categorized by their NIPA category. Tools related to electronics, furniture, and machinery are
more frequently found, while those related to mining, medical equipment, and aircraft are less common.
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Figure 1: Distribution of Similarity Scores
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Notes. This figure plots the density of similarity scores for the pairs of capital goods and occupations. The
text similarity score is initially measured at the task level for each capital good and then aggregated to the
capital-occupation level.

defined as follows:

wij = TFij · IDFi , TFij =
fij∑
i fij

, IDFi = log

(
J∑

j 1{i ∈ j}

)
,

where J is the number of total documents. Therefore, IDFij increases when the word ap-

pears frequently within the document but decreases when it is common across other doc-

uments. This transformation helps match two texts that have meaningful common words.

The resulting similarity score ranges from 0 to 1 by construction. A score of 0 indicates

that there are no shared words, while a score of 1 demonstrates identical texts.

After constructing similarity scores for each capital goods and task, we aggregate the

scores to the capital-occupation level. Since various occupations encompass heteroge-

neous sets of tasks, they have different scores for a given capital good. We compute the

unweighted average of these similarity scores across tasks to obtain scores at the capital-

occupation level.
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Figure 1 shows the distribution of the similarity scores between capital goods and

occupations. The distribution is right-skewed, indicating that most capital-occupation

pairs do not have many overlapping words. Nonetheless, some capitals have descrip-

tions closely related to the task descriptions of occupations. For example, in Figure 1,

the glass cutter has one of the highest similarity scores with glaziers but a low similarity

score with craft artists. Based on these scores, a capital good is considered task-similar

to the occupation if the similarity exceeds the 90th percentile; all other capital goods are

classified as task-dissimilar.11

We follow the imputation procedure of Caunedo et al. (2023) to calculate a quantity

index of capital bundles at the occupation and industry level for similar and dissimilar

capital. The stock of each category is prorated with an intensity-weighted number of

workers in each occupation. Then, an index of capital bundles is measured as a chained

index from the base year, 1980, which grows at the weighted average of growth rates

across NIPA capital categories using expenditure weights. The user costs of the capital

bundles are derived from a series of user costs by capital goods with the zero profit con-

dition in Equation (1). For details on the imputation process, see Appendix B.

Table 1 shows the intensity of capital, defined as the average capital stock per worker

among various groups of occupations. Panels A and B sort occupations based on their

abstract and routine scores from Autor and Dorn (2013). The intensity of task-similar

capital was the highest for non-abstract occupations in the first quintile in both 1980 and

2015, whereas the intensity of task-dissimilar capital was almost flat across the abstract

score of occupations in 1980 but became the highest for abstract occupations in the fifth

quintile in 2015. In Panel B, routine occupations in the fifth quintile had the fastest growth

in task-similar capital between 1980 and 2015. In contrast, their growth of task-dissimilar

capital was relatively less pronounced than in non-routine occupations.

In Panel C, occupations are sorted by their labor shares in occupational expenditures

on capital and labor in 1980. Low labor shares implied a lower intensity of similar capital

but a higher intensity of dissimilar capital in 1980. In 2015, low labor shares were asso-

11We try different thresholds and show the estimation results in Appendix D.
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Table 1: Capital Intensity across Occupation Groups

Similar Dissimilar

Low Middle High Low Middle High

Panel A. Across Abstract Score

1980 17.59 10.01 3.23 27.78 29.25 26.13
2015 36.26 19.56 8.60 73.90 91.54 145.48

Panel B. Across Routine Score

1980 2.80 14.53 5.77 8.42 34.20 32.51
2015 4.40 28.18 17.36 39.45 118.25 100.43

Panel C. Across Labor Share in 1980

1980 7.94 12.65 6.76 51.85 25.29 8.42
2015 25.74 22.96 9.82 190.40 81.98 30.40

Panel D. Across Wage in 1980

1980 9.94 9.09 14.46 24.62 29.15 29.89
2015 17.06 20.24 27.44 52.45 96.68 149.34

Notes. This table presents the capital intensity for task-similar and task-dissimilar capital be-
tween occupations segmented into three groups. Capital intensity is defined as the average
capital stock per employee, with values expressed in thousands of 2012 dollars. Panel A sorts
occupations by their abstract scores, Panel B by routine scores, Panel C by the occupational
labor share in 1980, and Panel D by the wage level in 1980. The columns labeled Low and
High correspond to occupations in the first and fifth quintiles, respectively, while those la-
beled Middle encompass occupations within the second to fourth quintiles.

ciated with a higher intensity of similar capital. In relative terms, occupations with high

labor shares experienced a more rapid growth of dissimilar capital than similar capital. In

contrast, occupations with low labor shares had more balanced growth between similar

and dissimilar capital. When occupations are sorted by their wage level in 1980 in Panel

D, high-wage occupations in the fifth quintile had the fastest growth of dissimilar capital,

whereas the growth of similar capital was comparable across wage groups. As a result,

the distribution of dissimilar capital was more dispersed between wage groups in 2015

than in 1980.

In summary, between 1980 and 2015, the intensity of task-similar capital grew faster

for non-abstract and routine occupations with low labor shares. In terms of task-dissimilar

capital, the intensity increased more rapidly for abstract and non-routine occupations

with high wages.
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3.3 Measuring Capital-Embodied Innovation

Capital-embodied innovation is measured by matching patents with capital goods.

To do so, we calculate the text similarities between patents and capital goods, following

a procedure similar to Section 3.2. A patent is assigned to a capital good if the similarity

score of its title and abstract to the Wikipedia description of the capital good exceeds the

90th percentile across patent-capital pairs. Some patents may not be relevant to any of

the capital goods, and others may be relevant to many. Therefore, we allow patents to be

matched to multiple or none of the capital goods based on the similarity score. We allow

a single patent to be assigned to, at most, five capital goods. A patent linked to multi-

ple capital goods is weighted by the inverse number of the matched goods. After this

procedure, 27% of the patents are matched with at least one capital good.12 We count the

cumulative number of patents associated with each good in the UNSPSC from 1970.

The number of patents across capital goods is then aggregated at the occupation

level. Note that each occupation uses two types of capital goods: task-similar and task-

dissimilar. Based on the crosswalk between the UNSPSC and NIPA categories from

Caunedo et al. (2023), the number of patents at the eight-digit UNSPSC level is averaged

within each NIPA capital category for each occupation and capital group. The occupation-

level CEI is measured by the average log difference in the number of patents across the

NIPA categories, each weighted by the average capital expenditure share between 1980

and 2015, as in Equation (3).13 By taking averages across capital goods and then capi-

tal categories, our CEI measures do not reflect the variety of capital goods within capital

categories and the quantity of capital categories within a capital type.

Table 2 presents the summary statistics for the average number of patents at the

occupation-industry level.14 The number of patents has increased over time but at dif-

12Table A2 shows the share of patents that matched at least one capital good across patent classes and
periods. Example 1 in Appendix A.1 displays a sample matching between patent and capital goods.

13In our context, taking the log difference in the number of patents removes time-invariant components
of measurement errors associated with the text-matching procedure. For example, if Wikipedia articles
about lasers are easier to match than those about computers and the errors are multiplicatively separable
and constant over time, log-differencing the number of patents cancels out the errors.

14If an occupation does not have any task-similar good, the number of patents is zero for task-similar
capital.
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Table 2: Summary Statistics of Patents Matched with Capital Goods

Similar Dissimilar

Mean SD. Mean SD. N

1970 – 1980 44.4 97.5 45.8 71.2 15,902
1980 – 1990 93.5 185.6 96.0 133.3 15,902
1990 – 2000 137.4 271.1 171.5 225.3 15,902
2000 – 2015 428.5 840.5 558.1 667.6 15,902

Notes. This table displays the summary statistics of patents matched with task-dissimilar and
task-similar capital aggregated at the occupation-industry level. We take the average number
of patents, weighted by the share of capital expenditure in each period.

Table 3: CEI Measure across Occupation Groups

Similar Dissimilar

Low Middle High Low Middle High

Panel A. Across Abstract Score

2.40 1.70 1.77 2.90 3.58 3.78
Panel B. Across Routine Score

0.81 2.34 1.52 3.59 3.49 3.30
Panel C. Across Labor Share in 1980

2.66 1.80 1.04 3.11 3.47 3.95
Panel D. Across Wage in 1980

2.17 1.84 1.57 3.05 3.45 4.01

Notes. This table presents the employment-weighted averages of CEI across three bins of
occupations. Panel A categorizes occupations based on their average wages in 1980, Panel
B uses the abstract score, and Panel C employs the routine score. The CEI is defined in
Equation (3). The columns labeled Low and High represent the occupations in the first and
fifth quintiles, respectively, while those labeled Middle cover occupations within the second
to fourth quintiles.

ferent rates across occupations. Initially, the number of patents was comparable between

similar and dissimilar capital. However, task-dissimilar capital experienced faster growth

in patents than task-similar capital, suggesting that more patents are made on capital

goods used as task-dissimilar capital.

Table 3 displays CEI for various occupational groups. Panel A sorts occupations by

their abstract task scores, showing that CEI-s is the highest in the first quintile, while CEI-
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d is the highest in the fifth quintile. These patterns suggest that abstract occupations are

disproportionately more affected by innovation in dissimilar capital and less by innova-

tion in similar capital. When occupations are sorted by routine task scores in Panel B,

non-routine occupations in the first quintile have the highest CEI-d, but the dispersion is

not as strong as when occupations are sorted by abstract task scores. Furthermore, CEI-s

is not monotone in routine task scores.

In Panels C and D, occupations are grouped by their labor share and wage levels in

1980, respectively. CEI-s is higher for occupations with low labor shares, whereas CEI-

d is higher for occupations with high labor shares. Finally, low-wage occupations have

relatively higher CEI-s, while high-wage occupations have relatively higher CEI-d. To

summarize, CEI-d was biased towards abstract and non-routine occupations with high

labor share and wages. CEI-s is higher for non-abstract and low-wage occupations with

low labor share. These findings align with the heterogeneous growth of capital inten-

sity in Section 3.2. Our results confirm that occupations are heterogeneously exposed to

innovations in magnitude and composition, which is consistent with the hypothesis of

Autor et al. (2003), who attribute heterogeneous changes in occupational labor demand

to computer technology becoming popular over time.

Since some tools are not listed on the Wikipedia page and are therefore excluded from

our calculation, the CEI for certain capital goods with higher missing rates may be under-

estimated. To address this issue, we reweight the tools by the inverse of their Wikipedia

matching rate and report that the results remain quantitatively similar in Appendix Table

A2.
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4 Estimation

4.1 Strategy

Estimation of γp, the coefficient of CEI on capital user costs, is straightforward. We

apply Equation (2) to estimate γp.

∆ log rjio = γp∆ logPjio + ωjio. (15)

Unless otherwise noted, ∆ denotes an operator that takes the difference between 1980 and

2015. rjio represents the user cost of capital for capital type j in industry i and occupation

o, as defined in Equation (1). ∆ logPjio is defined in Equation (3) as the average growth

rate of patents matched to each capital category n ∈ Njo, weighted by the average capital

expenditure share in 1980 and 2015.15

Next, we use the first-order conditions of the cost minimization in Section 2.3 for

estimation. Specifically, Equation (10) is used to estimate the elasticities of substitution for

the inner CES composite, for the outer CES composite, and across occupational services.

Combining Equations (7) and (8) with (10) gives

∆ log lio = γs∆ logPsio + γd∆ logPdio + κa∆ log (wo) (16)

+ κs∆ log

(
1 +

rsioksio
wolio

)
+ κd∆ log

(
1 +

(
1 +

rsioksio
wolio

)−1

× rdiokdio
wolio

)
+X ′

ioβ + νio.

In this equation, κs = σ−ρs
ρs−1

, κd ≡ σ−ρd
ρd−1

, and κa ≡ −σ. νio is the residual demand compo-

nents, and Xio is a set of control variables, which are described below.

Several endogeneity concerns arise for the estimation of this equation. First, CEI mea-

sures ∆ logPsio and ∆ logPdio may be correlated with νio if innovation activities respond

15The regression is conducted at the occupation-industry level, where patents and capital goods are ag-
gregated. We adopt this specification because the occupation-industry level is the primary unit of analysis
in our study. Alternatively, we run the regression at the capital good level and confirm that the regression
coefficients are quantitatively similar in Section 4.2.
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to occupational demand shocks. For example, an increase in supply for certain occupa-

tional services could incentivize firms to make more innovations in related capital goods.

Second, since wo is jointly determined with lio, we need an exogenous shifter for labor

supply. Lastly, the capital-to-labor income ratios for task-similar and task-dissimilar cap-

ital may also be correlated with νio if investment decisions are affected by the residual

demand shocks.

To address these concerns, we introduce five instrumental variables: academic publi-

cations related to task-similar and task-dissimilar capital, immigration shocks from Latin

American countries, and changes in import value for each type of capital. Our iden-

tification assumption is that these instrumental variables are correlated with the main

independent variables but not with the residual demand shocks, conditional on controls.

Appendix C details the variations and relevance of the instruments.

We construct shift-share instruments for CEI that capture heterogeneous knowledge

spillovers from academic publications to patents. For example, innovation in the com-

puter sector is based on knowledge produced in the field of electronic engineering. An

increase in the number of papers in electronic engineering is positively correlated with

innovation in the computer sector but unlikely to be correlated with demand shocks for

IT workers. This IV approach is similar to that of Aghion et al. (2019) and Berkes et al.

(2022), who use patent citations across regions and countries, respectively, to construct

the share and use patent growth as a shifter. In contrast, we exploit citations from patents

to academic publications to construct the share and use the growth rate of publications in

European countries as the shifter to obtain more exogenous variation.

To measure the diffusion of knowledge from academic publications to patents, we

use citation data from patents to academic publications following the literature (Marx

and Fuegi, 2020; Arora et al., 2021).16 We first construct the upstreamness of an academic

field f to the patent class p by using citations made from 1970 to 1980.17 The upstreamness

16A large number of citations from patents within a technology class to papers in a specific academic field
suggests that the academic field serves as an upstream source of knowledge for that technology class. Marx
and Fuegi (2020) show that 17.6% of USPTO patents cite at least one academic paper, with an average of
two academic citations per patent.

17For the academic field, the Web of Science Field is used, encompassing 251 distinct fields. For patents,

23



υpf is calculated as below:

υpf =
Cpf∑
f Cpf

,

where Cpf is the number of citations from patent class p to academic field f . The left panel

of Appendix Figure A1 plots the variation of citation share over patent classes.

Next, we use this share to construct the exposure measure of the capital bundle kjio to

the academic field f . The upstream measure υpf is multiplied by sPat.
jiop , the average share

of patent class p in capital bundle kjio, weighted by the expenditure-adjusted number of

patents from 1970 to 1980.18

zPub.
jio =

∑
p

sPat.
jiop

∑
f

υpf∆ log(Pf ) , (17)

where Pf is the number of publications in field f . Papers affiliated only with European

institutions are counted to avoid the potential bias from US patenting firms that also en-

gage in academic projects, which could be correlated with residual demand shocks. The

instrument increases if the academic fields relevant to the capital bundle experience faster

growth in publication.

The immigration instrument uses heterogeneous shares of immigrants from Latin

American countries at the occupation and industry level interacted with the growth of

Latin American immigration. Immigrants from Latin American countries likely possess

comparative advantages that differ from those of US-born workers, influencing occupa-

tional labor supply in distinct ways. For each occupation, the heterogeneous exposure to

immigration shocks is computed based on the share of Latin American workers in 1980.

The Bartik immigration shock for occupation o is defined by the following equation.

zLatinio =
∑
c

sLatinco ∆ log (Lc − lco) . (18)

In the equation, sLatinco is the share of workers from Latin American country c in occupation

three-digit IPC patent classes, comprising 387 classes, are used.
18Appendix C.1 provides the formal definition of sPat.

jiop .
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o in 1980. lco is the number of workers in occupation o from country c, and Lc is the

total number of immigrants. Workers in occupation o are subtracted from calculating the

supply shock to rule out the effect of occupation-level shocks that led to more immigrants

from Latin America.

Lastly, we use capital import data to construct a shifter for capital expenditure. Specif-

ically, we calculate the log change in import value from 1980 to 2015 for each capital cate-

gory n. Then, the import shock is defined as below:

zImport
jio =

∑
n∈Njio

sImport
jion ∆ logmn , (19)

where sImport
jion represents the capital expenditure share of capital good n for capital bundle

kjio in 1980. mn is the value of imports. We expect that an increase in the value of imports

would be positively associated with an increase in capital stock from 1980 to 2015. For

example, if a capital bundle relied more on sewing machines and its import increased

significantly due to cheaper supplies from other countries, the capital expenditure rjiokjio

would also increase. This global increase in commodity-level trades is plausibly exoge-

nous to the demand shock at the occupation level between 1980 and 2015.

Controls include the task-offshorability index at the occupation level from Autor and

Dorn (2013) and the initial levels of log wage bill. The offshorability index controls de-

mand changes for occupational services related to international trade. We also formulate

a Bartik-style control for occupational services with industry-level employment growth

interacting with industry composition at the occupation level. Lastly, one-digit occupa-

tion fixed effects are added in the regression, which implies that the regression compares

occupations in the same categories, such as managerial occupations or professional spe-

cialty occupations. 123 occupations that do not have any task-similar capital are excluded

from the estimation.

We exploit the variations at the industry-by-occupation level for two reasons. First,

industries have different capital composition. For example, the manufacturing industry

works more with machinery than the service industry. Thus, our CEI measure of opera-
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Table 4: First-Stage Results

Wage Patent-s Patent-d Capital-s Capital-d

Immigration -1.42 0.00 0.12 0.02 0.00
(0.02) (0.02) (0.03) (0.00) (0.00)

Publication-s -0.21 1.80 0.08 0.02 0.02
(0.07) (0.08) (0.11) (0.01) (0.01)

Publication-d -0.48 0.49 1.67 -0.07 0.05
(0.07) (0.08) (0.11) (0.01) (0.01)

Import-s 0.42 0.54 -0.63 0.11 0.03
(0.04) (0.05) (0.07) (0.00) (0.00)

Import-d 0.28 0.04 0.32 -0.05 0.03
(0.05) (0.05) (0.08) (0.01) (0.01)

N 7,645 7,645 7,645 7,645 7,645
F-statistics 900.15 122.70 131.75 139.06 74.67

Notes. This table presents the results of the first-stage regression in Equation (16). Stan-
dard errors are in parentheses. Immigration is the instrumental variable defined in Equa-
tion (18). Import-d and Import-s represent import shocks for task-similar and task-dissimilar
capital, respectively, as characterized in Equation (19). Publication-d and Publication-s repre-
sent publication shocks for task-similar and task-dissimilar capital, respectively, as defined in
Equation (17). Wage is ∆ logwo. Patent-s and Patent-d are ∆ logPsio, ∆ logPdio, respectively.

Capital-s is
(
1 + rsioksio

wolio

)
, and capital-d is ∆ log

(
1 +

(
1 + rsioksio

wolio

)−1
× rdiokdio

wolio

)
.

tions researchers gives more weight to machine-related patents for the manufacturing in-

dustry than for the service industry. In Appendix E, we decompose the variations of CEI

measures and their instruments between occupations and industries. The results suggest

that more than 20% of the variations in CEI-d are the result of variations within occupa-

tions. Second, occupational composition varies significantly between industries. Thus,

it is important to control heterogeneous trends between industries when quantifying the

effect of CEI on labor demand.

4.2 Results

Table 4 presents the results of the first stage. All instrumental variables display signs

with the corresponding variables consistent with the prior. Specifically, immigration

shocks are negatively correlated with wage changes, and publication shocks for each type

of capital are positively correlated with the patent measure. In addition, import shocks
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Table 5: Parameter Estimates

ρs ρd σ γp γs γd

Estimate 3.02 1.55 2.27 -0.41 -0.59 0.86
SE (0.97) (0.24) (0.24) (0.01) (0.18) (0.31)

Notes. This table shows the estimates and standard errors of the regression equations (15)
and (16). ρs (ρd) is the elasticity of substitution between task-similar (task-dissimilar) capital
and labor. σ is the elasticity of substitution between different occupational services. γp is the
coefficient of CEI on user costs of capital. γs (γd) is the coefficient of CEI-s (-d) on occupational
service demand shifter.

for each type of capital are positively associated with the corresponding capital income

ratios. Each regression exhibits high F-statistics, and the Cragg-Donald Wald F-statistic

value is 14.06, indicating that the instrumental variables are strong in the first stage.

Table 5 shows the estimation results.19 The elasticity of substitution between task-

similar capital and labor is estimated at 3.0, whereas the elasticity between labor and task-

dissimilar capital is 1.6. Our results are modestly higher than the estimates in Caunedo et

al. (2023), who assume a single elasticity of substitution between capital and labor for each

occupation. Using time-series variations in birth rates and the supply of educated work-

ers to construct the occupation-level supply shifter, they find that the elasticity ranges

from 0.7 to 2.2. The estimation in this paper deals with long-term adjustments in the la-

bor market over three decades and uses cross-sectional variations. We also construct a

labor supply shifter with cross-sectional exposure to immigration from Latin America.

Our marginally higher estimates are likely to result from dealing with a longer time hori-

zon and cross-sectional variations for estimation.

The substitution elasticity across occupational labor inputs, σ, is also estimated at a

value higher than that of the literature. In Caunedo et al. (2023), the value is calibrated

at 1.3. This paper estimates the value of 2.3. This value is larger than the estimates by

Lee and Shin (2017), 0.7, and Burstein et al. (2019), 2. The higher estimate of the elastic-

ity between occupational services in this paper is made with the longer time horizon for

19Table A5 in Appendix D.2 reports estimation results when we impose an alternative nesting in the
occupational production function. Table A6 in Appendix D.3 presents the results where tools are weighted
by the inverse of their finding rates in Wikipedia for CEI estimation.
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adjustments. In addition, these papers use more aggregated levels of occupation codes.

Caunedo et al. (2023) and Lee and Shin (2017) report results with 11 occupations. Burstein

et al. (2019) have variations of 30 occupations. We have 291 occupations distinguished by

three-digit occupation codes from the 1990 Census.

The estimate for σ is smaller than ρs but larger than ρd. Due to the high standard error

of ρs, it is hard to tell whether ρs is significantly greater than ρd or σ. However, ρd is less

than σ at the significance level of 1%. As discussed in Section 2.3, these values imply that

the scale effect of CEI increasing the demand for occupational services is smaller than the

substitution effect between labor and capital for task-similar capital, but the reverse is true

for task-dissimilar capital. As a result, a lower user cost of task-similar capital reduces the

relative labor demand. Conversely, a lower user cost of task-dissimilar capital raises the

relative labor demand.

Table 5 also presents the estimates for the coefficient of CEI measures on the user

costs of capital and demand shifters for occupational services. The estimate for γp is

negative and large in magnitude.20 An increase in CEI by 1% reduces the user cost of

capital by 0.41%. Along with the estimates of elasticities, this negative coefficient estimate

implies that CEI-s leads to stronger substitution with capital, decreasing occupational

labor demand. In contrast, CEI-d stimulates the demand for occupational services more,

which dominates the substitution effect and raises labor demand. The estimate for γs is

negative, and the estimate for γd is positive. These results indicate that CEI-s decreases

the demand for occupational services, whereas CEI-d raises it, even after considering

their effects on user costs. These effects are also quantitatively important. An increase in

CEI-s by 1% reduces occupational service demand by 0.59%, and an increase in CEI-d by

1% increases occupational service demand by 0.86%.

In counterfactual exercises, we consider two values for the elasticity of occupational

labor supply: η = 0.3 or η = 1. Caunedo et al. (2023) calibrate η = 0.3 at the yearly

frequency and with coarser occupational codes. Since we consider labor supply adjust-

20Alternatively, we run the regression at the NIPA capital good and industry level. Then, the coefficient
of CEI on the user costs of a capital good is estimated to be -0.47 with a standard deviation of 0.06.
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ments over longer than three decades with more detailed occupational codes, the supply

elasticity calibrated at 0.3 is likely to be a lower bound.21 To capture the possibility that

labor supply is more elastic to wage changes, counterfactual equilibrium with η = 1 is

also derived in Section 5.

5 Counterfactuals

The counterfactual exercise aims to address the following question: What happens to

the labor market without CEI that is heterogeneous between occupations and industries?

To address this question, we calculate counterfactual equilibria where CEI measures are

back to their levels in 1980, with other demand and supply shocks unchanged.

5.1 CEI and Task-Biased Labor Market Changes

We test what task-biased changes in the labor market would look like without CEI

between 1980 and 2015 and thereby see if CEI constitutes task-biased technical changes

in Autor et al. (2003). The task bias of labor market changes is measured in the following

auxiliary regression that relates the log differences in wage and employment between

1980 and 2015 to abstract and routine task scores at the occupation level from Autor and

Dorn (2013).

Changeo = θ0 + θ1Task Scoreo + εo. (20)

Each occupation is weighted by its employment in 1980. The OLS estimates for θ1 summa-

rize the correlation between abstract and routine task scores with cross-sectional changes

in wage and employment at the occupation level and thus are used as a measure of task

bias of labor market changes in 1980-2015.

Table 6 shows the estimates for the regression coefficients. During this period, if an

21We regress the following supply equation: ∆ logLo = ψ + η∆ logwo + ϵo with CEI and import shocks
as demand instruments at the occupation level. Then η is estimated at 2.1. Thus, we take a value between
the two numbers, 1, as our benchmark.
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occupation has a one-standard-deviation higher score on abstract tasks, it has 0.17 and

0.44 standard deviations higher employment and wage growth rates, respectively.

In Panel A of Table 6, two counterfactual equilibria are computed for η = 0.3 and

η = 1 when the patent measures return to their levels in 1980. The biases in employment

and wage are smaller for both abstract and routine task scores in the absence of CEI.

Our results suggest that CEI explains 18–59% of abstract-biased employment changes

and almost all wage growth. Likewise, CEI could account for 8–27% and 70–79% of the

bias against routine occupations in wage and employment growth, respectively.

The effect on the wage is larger than the effect on employment, particularly when

η = 0.3. This is due to the calibrated value of the supply elasticity η being too low to

generate large responses in employment. Between 1980 and 2015, employment changes

were more dispersed, showing a standard deviation of 0.75, compared to wage changes,

which had a standard deviation of 0.22. Thus, with the values of supply elasticity consid-

ered, most employment changes result from non-wage supply shifters, ϵo. With η = 1, the

employment responses become larger, while the wage responses diminish. Since η = 0.3

likely represents the lower bound, η = 1 is assumed for the counterfactual exercises be-

low.

Panel B shows the counterfactual results, where only one type of CEI is fixed to the

level in 1980. CEI-s and CEI-d have qualitatively similar effects on the task bias of em-

ployment and wage changes. CEI-s is higher for abstract and non-routine occupations,

whereas CEI-d is higher for abstract ones, as shown in Table 3. Consequently, the nega-

tive effect of CEI-s yields results analogous to the positive effect of CEI-d on occupational

service demand. Given the comparable magnitudes of the coefficient estimates in Table

5, CEI-d and CEI-s have similar quantitative effects.

Panel C decomposes the two channels in which CEI affects occupational labor de-

mand. Almost all employment responses operate through demand shifters. Lower user

costs of capital from CEI have limited effects on employment. This is because the esti-

mated gaps between ρs, ρd, and σ are small. In Equation (10), the exponents of Θ̃io and ỹio

are (ρd − ρs)/(ρs × ρd) = −0.31 and −1/σ + 1/ρd = 0.20, respectively. Together, a 1% in-
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Table 6: Counterfactual: Task-Biased Labor Market Changes

Abstract Routine

Employment Wage Employment Wage

Actual Change 0.17 0.44 -0.26 -0.33

Panel A. Varying Supply Elasticity
Without CEI (η=0.3) 0.14 0.02 -0.24 -0.07
Without CEI (η=1) 0.07 0.05 -0.19 -0.10

Panel B. Similar vs. Dissimilar CEI
Without CEI-s 0.13 0.19 -0.22 -0.18
Without CEI-d 0.14 0.20 -0.23 -0.17

Panel C. Different Channels
Through User Costs 0.19 0.44 -0.26 -0.33
Through Task Demand 0.08 0.06 -0.19 -0.10

Notes. This table shows the actual and counterfactual regression coefficients of the wage and
employment growth rates at the occupation level in the occupational task scores of Autor and
Dorn (2013) as in Equation (20). The counterfactual equilibrium fixes the CEI measures at their
levels in 1980. The rows η = 0.3 and η = 1 in Panel A set the elasticity of occupational labor
supply at 0.3 and 1, respectively. Panel B fixes patent measures of either similar or dissimilar
capital at the 1980 level separately. Panel C fixes patent measures to the 1980 level only when
calculating changes in user costs and occupational demand, respectively. Panels B and C assume
η = 1.

crease in Θ̃io reduces the occupational labor demand in Equation (10) by less than 0.11%,

and a 1% increase in ỹio increases it only by 0.20%. Moreover, ρd and ρs are close to one,

weakening the effect of CEI-s and CEI-d on Θ̃io and ỹio in Equations (11) and (12). Thus,

the user cost channel has a minor role in generating significant employment responses.

In contrast, the estimated coefficients of CEI on demand shifter are large.

5.2 CEI and Declines in Labor Share

We use our framework to examine how CEI has contributed to the decline in labor

share in the United States since the late 1970s (Elsby et al., 2013; Karabarbounis and

Neiman, 2014). We first express the aggregate labor share as the expenditure-weighted
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average of the labor share at the occupation-industry level.

LS =
∑

sInputio

wolio
wolio + rsioksio + rdioldio

. (21)

In this equation, sInputio represents the share of occupation o and industry i in the total ex-

penditure on production inputs. Using this equation, we decompose the change in the ag-

gregate labor share into two components: the within-occupation margin, which captures

the change in labor share with fixed income shares, and the between-occupation margin,

which reflects the change in labor share with fixed within-occupation labor shares.

In our framework, lower user costs of capital associated with CEI change aggregate

labor share within and between occupations. First, because the elasticities of substitution

of labor with task-similar and task-dissimilar capital are greater than one, lower user

costs decrease labor shares within occupations and industries. Second, as the elasticity

of substitution between occupational services is also greater than one, a lower user cost

increases the input cost share of an occupation. Since occupations have different labor

shares, changes in input cost shares affect the aggregate labor share.

Changes in occupational demand shifters also alter the aggregate labor share within

and between occupations. Because the supply elasticity is greater for capital than labor, an

increase in occupational service demand increases wage relative to user costs and reduces

within-occupation labor shares. At the same time, since CEI varies at the occupation level,

it directly shifts input cost shares between occupations.

Table 7 summarizes the actual and counterfactual changes in labor share. The data

show that the aggregate labor share dropped from 81% to 71% between 1980 and 2015.

These numbers are higher than the labor share in national accounts because they do

not include profits and capital expenditures on structures. Both within-occupation and

across-occupation margins contribute to lower labor share, but within-occupation margin

is quantitatively more important in driving the changes.

Panel A indicates that, without CEI, the aggregate labor share falls by 1.1–1.4%, 86–

89% smaller than the actual change. CEI especially contributes to larger declines in
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Table 7: Counterfactual: Declines in Labor Share

Within Between All

Actual Change -8.64 -1.24 -9.87

Panel A. Varying Supply Elasticity
Without CEI (η=0.3) -0.06 -1.04 -1.09
Without CEI (η=1) -0.18 -1.24 -1.42

Panel B. Similar vs. Dissimilar CEI
Without CEI-s -6.82 -0.80 -7.62
Without CEI-d -3.10 -0.96 -4.06

Panel C. Different Channels
Through User Cost -0.42 0.80 0.38
Through Task Demand -0.46 -1.21 -1.67

Notes. This table shows changes in labor share between 1980 and 2015 in actual data and coun-
terfactual equilibria. The counterfactual equilibrium fixes the CEI measures at their levels in 1980.
The column Within indicates changes in labor share from changes with fixed input income share
between occupations (within-occupation), and the column Between shows changes in labor share
with fixed within-occupation labor shares (across-occupation). The rows η = 0.3 and η = 1 in
Panel A set the elasticity of occupational labor supply at 0.3 and 1, respectively. Panel B fixes
patent measures of either similar or dissimilar capital to the 1980 level separately. Panel C fixes
patent measures to the 1980 level only when calculating changes in user costs and occupational
demand, respectively. Panels B and C assume η = 1.

within-occupation labor shares but barely changes between-occupation labor shares. In

Panel B, CEI-d has a larger effect on within-occupation labor share than CEI-s because

CEI-d is higher than CEI-s in Table 3. Moreover, some occupations do not have task-

similar capital. Consequently, although the elasticity of substitution of task-dissimilar

capital with labor is closer to one than that of task-similar capital, CEI-d lowers within-

occupation labor shares more substantially than CEI-d. Due to the non-linearity of the

model, the sum of their separate effects in Panel B is different from the combined effects

of CEI-s and CEI-d in Panel A, particularly in the between-occupation margin.

In Panel C, both user cost and task demand channels significantly reduce within-

occupation labor shares because of elastic substitution toward capital and inelastic labor

supply. Meanwhile, changes in user costs also contribute to decreases in labor share be-

tween occupations by changing the share of input costs between occupation and indus-

try. Occupations with high labor shares exhibit higher CEI-d but lower CEI-s, resulting in
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opposing effects from changes in user costs. In aggregate, the effect of CEI-s dominates,

thereby reducing the share of high-labor-share occupations. Higher CEI-d and lower CEI-

s of these occupations shift up the task demand and income share of these occupations.

However, the inelastic labor supply increases their wages, lowers their input cost shares,

and dampens the demand shifter effect. Consequently, the task demand channel also has

a significant effect on labor share within these occupations.

5.3 CEI and Labor Market Polarization
Table 8: Counterfactual Polarization

Employment Wage

Low Middle High Low Middle High

Actual Change 0.17 -0.58 0.41 -0.03 -0.54 0.57

Panel A. Varying Supply Elasticity
Without CEI (η=0.3) 0.21 -0.59 0.38 0.21 -0.33 0.12
Without CEI (η=1) 0.26 -0.56 0.30 0.20 -0.36 0.16

Panel B. Similar vs. Dissimilar CEI
Without CEI-s 0.28 -0.63 0.35 0.19 -0.51 0.32
Without CEI-d 0.24 -0.58 0.34 0.07 -0.33 0.26

Panel C. Different Channels
Without ∆ User Costs 0.16 -0.57 0.41 -0.04 -0.53 0.57
Without ∆ Occ. Demand 0.24 -0.53 0.29 0.19 -0.36 0.17

Notes. This table shows the actual and counterfactual growth rates of wage and employment
when occupations are grouped by their wages in 1980. The counterfactual equilibrium fixes the
CEI measures at their levels in 1980. The wage and employment changes are standardized to have
a zero mean and a standard deviation of one in each case. Columns labeled Low and High denote
occupations with 1980 wage levels in the first and fourth quintiles, respectively. Columns labeled
Middle denote occupations between the two quintiles. The rows η = 0.3 and η = 1 in Panel A set
the elasticity of occupational labor supply at 0.3 and 1, respectively. Panel B fixes patent measures
of either similar or dissimilar capital to the 1980 level separately. Panel C fixes patent measures to
the 1980 level only when calculating changes in user costs and occupational demand, respectively.
Panels B and C assume η = 1.

Lastly, we study how CEI is related to polarization in the labor market after the 1980s.

The first row of Table 8 summarizes wage and employment changes between 1980 and

2015 for three occupation groups by their residual wages in 1980. As in Autor and Dorn

(2013), employment and wage changes at the occupation level take a U-shaped form over
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the wage level in 1980. High-wage occupations in the fifth quintile have 0.41 and 0.57

standard deviations higher employment and wage growth rates than the average occu-

pations, respectively, and low-wage occupations also exhibit higher cross-sectional wage

and employment growth rates than the average. The middle-wage ones, on the con-

trary, experience lower growth in terms of both employment and wage; the employment

growth rate is lower by 0.58 standard deviations than the average, and the wage growth

rate is lower by 0.54 standard deviations than the average.

Panel A of Table 8 shows the counterfactual employment and wage growth when the

patent measure, Patentjon, is fixed at the level in 1980. Under the counterfactual equilib-

rium without CEI, wage and employment increase less for high-wage occupations. This

result comes from high-wage occupations with higher CEI-d and lower CEI-s than others.

The reduction in high-wage employment is driven more by increases in low-wage occu-

pations than by middle-wage ones. CEI has a smaller impact on demand for middle-wage

occupations because low-wage occupations have a higher level of CEI-s and a lower level

of CEI-d than middle-wage occupations, as shown in Table 3.

Panel B of Table 8 shows the polarization measures from counterfactual equilibria

when only one type of capital has the patent measure fixed to 1980. Both CEI-s and CEI-

d contribute to the growth of high-wage occupations, and the effects are quantitatively

similar to each other. The last panel summarizes the counterfactual results when the

impact of CEI is active for only the user costs of capital or the demand shifter in the

production function at each time. Similarly to the task bias exercise, the vast majority

of wage and employment changes arise from the demand-shifter channel. This is also

because the estimated gaps between elasticities of substitutions are estimated to be too

small to have substantial employment effects.22

22Appendix G displays the effect of CEI on user costs of capital and how user costs alone can generate
labor market changes. Appendix H presents the results when only computers are included in the CEI
measure. In summary, the results are qualitatively consistent with the baseline but with a much smaller
magnitude.
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6 Conclusion

This paper develops a measure of capital-embodied innovation (CEI) by matching

patents with descriptions of capital goods from Wikipedia using text-based analysis. We

then use this measure to study the impact of technological factors on labor market trends.

Differences in the use of capital goods at the occupation level provide effective cross-

sectional variations to identify the impact of CEI.

This paper also proposes a crucial factor that determines the relationship between

technological changes in capital and labor demand: the similarity between occupational

tasks and the functions of capital. If capital functions similarly to occupational tasks, tech-

nological changes that reduce the user costs of such capital promote substitution towards

capital and decrease labor demand. Conversely, if capital performs functions different

from but essential to occupational tasks, technological changes in this type of capital in-

crease the relative labor demand for occupational labor. This distinction implies that the

effect of CEI is strongly dependent on the relationship between capital functions and oc-

cupational tasks.

CEI explains historical labor market trends, such as task-biased changes, declines in

labor share, and job polarization. Counterfactual analysis shows that CEI accounts for

a significant portion of employment growth, particularly in abstract and high-wage oc-

cupations, due to the higher CEI for their task-dissimilar capital and lower CEI for their

task-similar capital. CEI also contributed to historical declines in labor share by reducing

the user costs of capital and within-occupation labor shares. In addition, CEI reallocates

expenditures to occupations with low labor shares, thus decreasing the aggregate labor

share.

Using CEI measures from patents, technological factors can be distinguished from

others, such as trade and outsourcing. Innovations have shaped biased trends in la-

bor market demand, indicating that innovation policies can create biased labor market

changes. Since these policies affect innovations in various types of capital to different

extents—and because occupations are exposed to capital differently—innovation policies
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have heterogeneous consequences between occupations. Therefore, supplementary poli-

cies need to target more exposed occupations to reduce structural unemployment and

lower inequality in the labor market. The results in this paper highlight the need for

ongoing research on the long-term responses of the labor market to innovation policies

through CEI.
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A Details in Text Matching

This appendix reports the details of the matching between capital goods and patent

data. Table A1 displays the share of tools found in Wikipedia for the NIPA categories.

Table A1: Share of Tools Found in Wikipedia

NIPA Description Found in Wikipedia (%)

20 Electrical transmission, distribution, and industrial apparatus 73.08%
4 Computers and peripheral equipment 69.64%

30 Furniture and fixtures 63.16%
27 Ships and boats 62.86%
40 Service industry machinery 60.00%
11 Office and accounting equipment 54.22%
29 Other equipment 53.13%
41 Electrical equipment, n.e.c. 53.10%
19 General industrial including materials handling equipment 52.03%
13 Fabricated metal products 49.62%

5 Communication equipment 48.59%
22,25 Trucks, buses, and truck trailers + autos 48.57%

14 Engines and turbines 46.81%
36 Construction machinery 44.44%
33 Agricultural machinery 42.86%

9 Nonmedical instruments 40.19%
10 Photocopy and related equipment 37.66%
18 Special industry machinery, n.e.c. 35.29%
39 Mining and oilfield machinery 31.13%
17 Metalworking machinery 30.61%
28 Railroad equipment 30.00%

6 Medical equipment and instruments 26.07%
26 Aircrafts 14.29%

Using the crosswalk between UNSPSC and NIPA from Caunedo et al. (2023), we as-

sign a two-digit NIPA category code to each of the 4,180 tools. Then, we calculate the

share of tools that are found in Wikipedia for each NIPA category. Table A1 shows that

electronics, furniture, and machinery are more likely to be found in Wikipedia, while

mining, medical equipment, and aircraft are less likely to be found in Wikipedia.

Table A2 shows the share of patents matched with at least one tool across time periods

and patent classes. Patent classes are the one-digit codes of IPC. Patents on chemistry are

rarely matched to tools, whereas patents on engineering have higher matching rates than

others.
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Table A2: Patent-Tool Matching Rates across Patent Class and Period

Patent Class Matching Rate (%)
1970–1980 1980–1990 1990–2000 2000–2015

Human necessities 22.50 22.07 22.69 18.38
Transportation 33.19 32.75 33.48 26.80
Chemistry 6.74 7.31 8.18 9.06
Textile 28.53 30.61 31.36 26.19
Construction 32.14 31.30 31.87 24.29
Engineering 43.23 42.47 42.99 34.49
Physics 28.06 27.60 25.50 20.86
Electricity 27.48 27.74 25.87 21.87

Notes. This table presents the share of patents matched with at least one tool by period and
patent class (IPC one-digit level).
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A.1 Examples

Example 1 demonstrates how texts are matched. Texts are transformed into vectors of

words, and the similarity score measures the distance between these vectors. The similar-

ity score is higher if the two texts share more bigrams, pairs of consecutive words.

Example 1: Example of Text Matching between Patent and Wikipedia

Patent: Systems, apparatuses and meth-
ods for reading an amino acid sequence
(10139417)
system apparatus method reading amino
acid sequence embodiment present dis-
closure relate amino acid modified amino
acid peptide protein identification se-
quencing mean example electronic detec-
tion individual amino acid small peptide

Wikipedia: Protein sequencer
protein sequencing practical process de-
termining amino acid sequence part pro-
tein peptide may serve identify protein
characterize post translational modifica-
tion typically partial sequencing protein
provides sufficient information one se-
quence tag identify reference database
protein sequence derived conceptual
translation gene

Notes. This figure shows an example of an abstract of the matched patent and Wikipedia article of the
capital good. The blue text is the common words between two texts.
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Example 2 shows a selected list of capital goods and their matched patents. The de-

scription of the capital goods is aligned with the titles of the matched patents.

Example 2: Example of Matched Capital Goods and Title of Patents

Capital Goods Title of Patent

Battery chargers Power tool, battery, charger and method
of operating the same

Belt conveyors Conveyor belt assembly
Cash registers Theft proof cash drawer assembly

Desktop computers Method and system for managing windows
desktops in a heterogeneous server environment

Glass cutters Discrete glass sheet cutting

Satellite phone Communication system with direct
link to satellite

Sewing machine needles Multiple-needle sewing machine
Smoke detectors Smoke detector system for a house

Tire pressure gauge Tire pressure control system, tire pressure
control device and tire pressure control method

Touch screen monitors Technologies for interacting with computing
devices using haptic manipulation

Notes. This table shows examples of matched capital goods and the title of patents.
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B Measures of Capital Stock and User Costs

This appendix briefly explains how we impute the series of capital bundles and their

user costs. Occupation-specific capital stock and user costs are calculated using proce-

dures in Caunedo et al. (2023). Each occupation has a set of capital goods in the UNSPSC.

These goods are converted to the NIPA capital category using the crosswalk in Table 1 of

the Online Appendix for Caunedo et al. (2023). The 2012 fixed-price capital stock series

is used to measure the quantity of capital. The capital intensity of an occupation o for the

NIPA capital category n is first defined by the number of capital goods in the UNSPSC

from “Tools Used” that are mapped into n. Let #Capitals,no (#Capitald,no ) denote the num-

ber of task-similar (task-dissimilar) capital goods in the UNSPSC and Kint the fixed-cost

capital stock (based on the fixed price in 2012 USD) of industry i and NIPA capital cate-

gory n in time t. Then, the capital stock of occupation o, industry i, and capital good n is

imputed as

xsiont =
liot#Capitals,no∑

p lipt#Capitals,np +
∑

p lipt#Capitald,np

Kint (A1)

xdiont =
liot#Capitald,no∑

p lipt#Capitals,np +
∑

p lipt#Capitald,np

Kint. (A2)

liot is the number of occupations in industry i, occupation o, and time t. Thus, capital

stocks are prorated between occupations with an intensity-weighted number of work-

ers. If an occupation in an industry is missing from the O*NET and thus does not have

any tool, the average intensity of tools in the industry is assigned to the occupation to

adjust the capital stock. However, this occupation is not included in the regression anal-

ysis.

The price deflator is calculated as the ratio between current-cost and fixed-cost capital

stock from the BEA and used as a capital price index. Depreciation rates are computed

from depreciated capital stock data of the BEA. Specifically, the BEA depreciation rate

dint is calculated as the ratio of the depreciated capital stock in a year to the average

between the capital stock evaluated at the end of the year and the capital stock evaluated
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at the end of the previous year. Because BEA-reported depreciation measures reflect both

physical and economic depreciation, the physical depreciation rate is calculated using the

following equation.

1− δint = (1− dint)
qint/λ

c
t

qint−1/λc
t−1

(A3)

In this equation, λc
t is the price of consumption, and qint is the price deflator. The user cost

of capital category n for industry i and year t also comes from Caunedo et al. (2023) that

follows Jorgenson (1963).

λk
int =

qint
λc
t−1

[
R−

(
1− δ̄int

) qkint/λ
c
n

qkint−1/λ
c
t−1

]
. (A4)

R = 1.03 is the gross return on a safe asset, and δ̄int is the average (physical) deflation rate

of capital category n in industry i and the decade group t belongs to. If t = 1980, . . . , 1989,

δ̄ =
∑1989

t=1980 δint with δint the annual deflation rate. We use λc
t = 1.

The quantity index of capital type j = s, d for occupation o and industry i in year t is

given as the following equation.

kjiot = kjiot−1e
κk
jiot , kjio1980 =

∑
n

xjion1980 (A5)

κk
jiot =

∑
n

λk
intxjiont∑

n′ λk
in′txjion′t

κk
int. (A6)

κk
int is the growth rate of capital category n. Thus, κk

jiot is the expenditure-weighted

average growth rate of capital type j. Unlike Caunedo et al. (2023), we normalize the

occupation-level stock, not the user costs of each occupation and industry, with the level

in 1980. We take this approach because we are interested in the cross-sectional differences

in capital stock and user cost series at the occupation level.

The user cost for the capital bundle is computed as follows.

rjiot =

∑
n λ

k
intxjiont

kjiot
. (A7)
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The equation uses the zero profit condition (1).
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C Instrumental Variables

This appendix shows the variations that are used to formulate the shift-share in-

struments in the regression exercise and explains the equations that calculate the instru-

ments.

C.1 Academic Publication Shock

Figure A1: Citation Share and Publication Growth Rate
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Notes. Panel A plots the share of citations from patent technology classes (row) to academic fields (column)
in 1970–1980. The graph only contains the IPC classes that have more than 50,000 citations to science in the
entire period. When the color gets closer to blue, it has a higher citation share. Panel B displays the growth
rates of publications between 1980–2015 in different academic fields. Publication data comes from MAG
and includes publications associated only with European institutions.

The left panel of Figure A1 plots υpf , showing the variation of citation share over

patent classes. Engineering and chemistry are the fields that receive the most citations

from patents. The right panel of Figure A1 displays the growth rates of publications in

various academic fields. The fields with the highest growth rates include artificial intelli-

gence, information systems, hardware, software engineering, and control systems.

sPat.
jiop in Equation (17) is defined as below:

sPat.
jiop =

∑
n

 λk
jionxjion#Patentjon∑

n′ λk
jion′xjion′#Patentjon′

∑
u∈U(j,o,n)

1

#Capitalj,no

 #̂Patentup∑
p′ #̂Patentup′


 , (A8)
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Figure A2: CEI and Publication Instrument
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sponds to an occupation code in OCC1990, and the size of a circle corresponds to the stock value of capital
in 1980. CEI is residualized with industry fixed effects.

where λnxnPn∑
n′ λn′xn′Pn′

is the expenditure-adjusted patent share of NIPA capital category n for

capital bundle kjio. # Patentjion is the number of patents matched with the capital good

n for jio. U(j, o, n) is the set of UNSPSC u of type j used by occupation o corresponding

to n. #Capitalj,no is the number of capital goods in the UNSPSC that are classified as

NIPA category n and is the cardinality of U(j, o, n). Lastly, ̂# Patentup is the number of

patents in class p that are matched to the UNSPSC u. Thus, we give a higher weight to a

patent class if more patents matched to the occupation have the patent class, the capital

goods linked to the patent class are more representative in NIPA capital categories, and

the NIPA category associated with the patent class accounts for more in expenditures and

knowledge stock in the pre-period, 1980.

Then, the publication instrument is calculated as follows.

zPub.
jio =

∑
p

sPat.
jiop

∑
f

υpf∆ log(Pf ) . (A9)

where Pf is the number of publications in field f .

Figure A2 displays the scatter plots between CEI measures and the resulting academic

publication instruments, zPub.
jio , at the occupation level. The publication instruments are
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positively associated with the CEI measures, both for task-similar and task-dissimilar

capital.
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C.2 Immigration Shock

In order to construct an exogenous shifter in labor supply, we use trends in Latin

American immigration and heterogeneous exposures to Latin American immigration.

From 1980 to 2015, the population of Latin American-born workers in the US surged

eightfold, while the number of US-born workers doubled. As a result, the share of work-

ers born in Latin America in the total employment of the United States increased from

2.3% in 1980 to 10% in 2015, as shown in Panel A of Figure A3.

Figure A3: Share of Workers Born in Latin America
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Notes. Panel A plots the share of workers born in Latin America in 1980 at the occupation level and draws
the histogram of the observations. Each occupation is weighted by the number of workers in 1980. Panel A
plots the share of workers in the US who were born in Latin America over time.

Immigrants from Latin America are likely to have comparative advantages different

from those of US-born workers, influencing their choice of occupation differently. Panel B

of Figure A3 shows the histogram of the share of workers from Latin America in 1980 for

different occupations, with the weight of each occupation based on its employment num-

bers that year. The proportion of Latin American workers differs significantly between

occupations. For example, in 1980, 13.5% of the farm workers were from Latin America,

while less than 0.2% of the speech therapists were born in the region. Consequently, a

surge in Latin American immigration would disproportionately affect the labor supply in

certain occupations, such as farm workers.

Figure A4 plots the immigration instrument with the wage and employment growth
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rate at the occupation level. The immigration instrument is negatively correlated with

wage growth while positively associated with employment growth. This suggests that

our instrument serves as a shifter for labor supply.

Figure A4: Wage Change and Immigration Instrument
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employment growth are residualized with industry fixed effects.

54



C.3 Import Shock

Import shocks are constructed at the type(j)-industry(i)-occupation(o) level, as de-

fined in Equation (19). The capital expenditure share in 1980 serves as an exposure mea-

sure, while the growth rate of import value is used as a shifter. The growth rate of import

value is sourced from Comtrade data from 1980 to 2015. The Comtrade data records

yearly bilateral trade flows at the product level. We use the imported data from all coun-

tries to the U.S. at the four-digit SITC Rev. 2 level. The SITC codes are manually matched

with the NIPA capital categories. Table A3 displays the mapping.

The left panel of Figure A5 displays the variation in the capital expenditure shares,

and the right panel shows plots the distribution of growth rates of imported capital goods

at the SITC Rev. 2 level. These figures suggest that the import instruments have sufficient

variation both from the share and the shifter. Figure A6 plots the relationship between the

import instruments and capital expenditure growth rates at the occupation level. Capital

expenditure is calculated as the product of the stock and the user cost of capital goods.

These results suggest that the import instrument is positively associated with capital ex-

penditure, satisfying the relevance condition for the instrument.
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Figure A5: Import Instrument and Capital Expenditure
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Notes. Panel A shows the capital expenditure share in 1980 across two-digit occupation codes by capital
type in the X-axis and NIPA capital category in the Y-axis. Capital expenditure is calculated as the stock
value multiplied by the user cost of the capital. Panel B displays the distribution of growth rates for the
import value of capital goods from 1980 to 2015. The data is sourced from Comtrade, where we aggregate
four-digit SITC product codes into NIPA categories.

Figure A6: Import Instrument and Capital Expenditure

-2
0

2
4

6
C

ap
ita

l E
xp

en
di

tu
re

 G
ro

w
th

 (1
98

0-
20

15
)

1 2 3 4 5
Import Instrument

-2
0

2
4

6
C

ap
ita

l E
xp

en
di

tu
re

 G
ro

w
th

 (1
98

0-
20

15
)

0 1 2 3 4
Import Instrument

A. Task-dissimilar capital B. Task-similar capital

Notes. Panel A plots import instruments for task-dissimilar capital, and Panel B for task-similar capital
over capital expenditure. Capital expenditure is stock values multiplied by user costs of capital. Each circle
corresponds to an occupation code in OCC1990, and the size of a circle corresponds to the stock value of
capital in 1980. The capital expenditure growth is residualized with industry fixed effects.
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Table A3: Mapping Between NIPA Categories and HS Codes

NIPA code Description of NIPA code HS code Description of HS code

4 Computers and peripheral equipment 8471 Automatic data processing machines and units thereof
4 Computers and peripheral equipment 8473 Parts for use with data processing machines

5 Communication equipment 8517 Line telephony and telegraphy apparatus, including telephones
5 Communication equipment 8525 Transmission apparatus for radio-telephony or broadcasting
5 Communication equipment 8526 Radar, radio navigational aid, and radio remote control apparatus
5 Communication equipment 8529 Parts for transmission and reception apparatus

6 Medical equipment and instruments 9018 Instruments for medical, surgical, dental, or veterinary use
6 Medical equipment and instruments 9019 Mechano-therapy, massage, and psychological aptitude-testing apparatus
6 Medical equipment and instruments 9021 Orthopedic appliances, including crutches, splints, and braces
6 Medical equipment and instruments 9022 X-ray apparatus and other medical diagnostic imaging apparatus

9 Nonmedical instruments 9031 Instruments for measuring or checking geometric quantities
9 Nonmedical instruments 9026 Instruments for measuring or checking liquid or gas flow, level, or pressure
9 Nonmedical instruments 9027 Instruments for physical or chemical analysis
9 Nonmedical instruments 9032 Automatic regulating or controlling instruments

10 Photocopy and related equipment 8443 Printing machinery and machines for uses ancillary to printing
10 Photocopy and related equipment 8442 Machinery and apparatus for printing plate preparation

11 Office and accounting equipment 8470 Calculating machines; accounting and ticketing machines
11 Office and accounting equipment 8472 Other office machines

13 Fabricated metal products 7308 Structures and parts of structures of iron or steel
13 Fabricated metal products 7326 Other articles of iron or steel
13 Fabricated metal products 7616 Other articles of aluminum
13 Fabricated metal products 7419 Other articles of copper

14 Engines and turbines 8411 Turbojets, turbopropellers, and other gas turbines
14 Engines and turbines 8406 Steam turbines and other vapor turbines
14 Engines and turbines 8407 Spark-ignition reciprocating or rotary internal combustion engines
14 Engines and turbines 8408 Compression-ignition internal combustion piston engines

17 Metalworking machinery 8456 Machine tools for working any material by removal of material
17 Metalworking machinery 8461 Machine tools for planing, shaping, slotting, and broaching
17 Metalworking machinery 8462 Machine tools for working metal by forging, hammering, or die-stamping
17 Metalworking machinery 8463 Other machine tools for working metals or carbides

18 General industrial equipment 8479 Machines and mechanical appliances with individual functions
18 General industrial equipment 8428 Lifting, handling, loading, or unloading machinery
18 General industrial equipment 8431 Parts suitable for use with lifting or moving machinery

20 Electrical equipment 8535 Electrical apparatus for switching electrical circuits
20 Electrical equipment 8536 Electrical apparatus for switching or protecting electrical circuits
20 Electrical equipment 8544 Insulated wire, cable, and other electric conductors
20 Electrical equipment 8504 Electrical transformers, static converters, and inductors

22 Trucks, buses, and truck trailers / Autos 8703 Motor cars and other motor vehicles for transporting people
22 Trucks, buses, and truck trailers / Autos 8704 Motor vehicles for the transport of goods
22 Trucks, buses, and truck trailers / Autos 8716 Trailers and semi-trailers; other vehicles
22 Trucks, buses, and truck trailers / Autos 8706 Chassis fitted with engines for motor vehicles

26 Aircraft 8802 Aircraft, including helicopters and airplanes
26 Aircraft 8803 Parts of aircraft or spacecraft

27 Ships and boats 8901 Vessels for transport of persons or goods
27 Ships and boats 8903 Yachts and other vessels for pleasure or sports
27 Ships and boats 8904 Tugs and pusher craft

28 Railroad equipment 8601 Rail locomotives powered by external sources
28 Railroad equipment 8602 Rail locomotives powered by an internal combustion engine
28 Railroad equipment 8607 Parts for railway or tramway locomotives

30 Furniture and fixtures 9401 Seats (except barber, dental, or similar chairs)
30 Furniture and fixtures 9403 Other furniture and parts thereof

33 Agricultural machinery 8432 Agricultural, horticultural, or forestry machinery
33 Agricultural machinery 8433 Harvesting, threshing, and other agricultural machines
33 Agricultural machinery 8436 Other agricultural, horticultural, forestry machinery

36 Construction machinery 8429 Self-propelled bulldozers, excavators, and road rollers
36 Construction machinery 8430 Other moving, grading, leveling, scraping, and boring machinery

39 Mining and oilfield machinery 8430 Other moving, grading, leveling, scraping, and boring machinery

40 Service industry machinery 8476 Automatic goods vending machines
40 Service industry machinery 8451 Machinery for laundering, drying, cleaning, or ironing textiles

88 Software 8523 Discs, tapes, and other recorded media
88 Software 8524 Recorded media for sound or video reproduction

Notes. This table displays the manual mapping between NIPA capital categories and HS
codes (1992).
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D Robustness

D.1 Alternative Thresholds and Citation Measures

The baseline threshold is set at the 90th percentile of the occupation-capital similarity

score distribution to distinguish task-similar and task-dissimilar capital. This threshold

gives statistically significant differences to the CEI-s and CEI-d measures in the struc-

tural regression. Table A4 compares the estimation results across different thresholds for

task-similar capital. The estimates of structural parameters are robust overall to different

thresholds and the citation-based measures of CEI, except when the threshold is set at the

89th percentile. When the threshold is set at the 89th percentile and the set of task-similar

capital is extended, the elasticity of substitution of task-similar capital is now lower than

the elasticity of substitution between occupational services.

Table A4: Estimation Results with Different Thresholds and Citations

ρs ρd σ γp γs γd

90th Percentile 3.02 1.55 2.27 -0.469 -0.59 0.86
(0.97) (0.24) (0.24) (0.058) (0.18) (0.31)

89th Percentile 1.41 0.63 2.38 -0.32 -1.31 2.02
(0.19) (0.27) (0.33) (0.12) (0.48) (0.53)

91st Percentile 2.54 1.50 2.38 -0.33 -0.52 1.12
(0.46) (0.13) (0.18) (0.11) (0.10) (0.13)

Citation 4.73 2.11 2.72 -0.34 -0.54 1.15
(1.74) (0.41) (0.16) (0.12) (0.10) (0.12)

Notes. This table shows estimates of structural parameters in Table 5 with alternative CEI
measures and publication instruments. ρs (ρd) is the elasticity of substitution between task-
similar (task-dissimilar) capital and labor. σ is the elasticity of substitution between different
occupational services. γp is the coefficient of CEI on user costs of capital. γs (γd) is the coef-
ficient of CEI-s (-d) on occupational service demand shifter. The rows labeled the 90th, 89th,
and 91st Percentiles mean the percentiles of task-capital similarity scores used to calculate
thresholds for similar-dissimilar distinction. The baseline uses the 90th percentile. The row
labeled Citation uses the number of citations on the patents to measure CEI.
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D.2 Alternative Nesting

In the paper, we first combine labor with task-similar capital in the inner CES com-

posite and then task-dissimilar capital in the outer composite. We now change the order

of nesting and report the results. The results are quantitatively similar to the baseline,

except for ρs.

Table A5: Parameter Estimates Under Alternative Nesting

ρs ρd σ γs γd

Estimate 5.44 1.73 2.44 -0.70 1.36
SE (3.36) (0.19) (0.18) (0.09) (0.10)

Notes. This table shows the estimates and standard errors of the regression equations (15)
and (16). ρs (ρd) is the elasticity of substitution between task-similar (task-dissimilar) capital
and labor. σ is the elasticity of substitution between different occupational services. γs (γd) is
the coefficient of CEI-s (-d) on occupational service demand shifter.

D.3 Reweighting Using Wikipedia Missing Rates

Since some tools are not found in Wikipedia and are excluded from our calculation,

CEI can be underestimated if certain occupations use capital goods with higher missing

rates more intensively. To address this issue, we give weights to capital goods by the

inverse of the finding rate in Wikipedia in the Appendix Table A2. Table A6 shows the

estimation results.

Table A6: Parameter Estimates Under Reweighting

ρs ρd σ γp γs γd

Estimate 1.242 1.060 1.145 -0.338 -0.549 0.642
SE (0.506) (0.122) (0.265) (0.121) (0.142) (0.175)

Notes. This table shows the estimates and standard errors of the regression equations (15)
and (16) when the tools are weighted by the inverse of the finding rate in Wikipedia. ρs (ρd)
is the elasticity of substitution between task-similar (task-dissimilar) capital and labor. σ is
the elasticity of substitution between different occupational services. γs (γd) is the coefficient
of CEI-s (-d) on the demand shifter for occupational services.

59



E Industry Variations of CEI

We report the results of the variance decomposition of CEI measures between occu-

pations and industries in Table A7. The variation of CEI-s predominantly comes from

occupation-level heterogeneity in the lists of capital goods. However, a non-negligible

fraction of variation comes from industry-level heterogeneity in capital composition within

each occupation for CEI-d. Due to industry-level heterogeneity in occupational com-

position, between-industry variations of CEI measures are also sizeable in the second

panel.

Table A7: Variance Decomposition

Similar Dissimilar
CEI IV CEI IV

Between Occupation 0.923 0.961 0.786 0.882
Within Occupation 0.077 0.039 0.214 0.118
#Occupations 211 - 291 -

Between Industry 0.421 0.606 0.373 0.467
Within Industry 0.579 0.394 0.627 0.533
#Industries 59 - 59 -

Notes. This table shows the variations of the CEI measures and their instruments between
occupations and industries.
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F Equations for Counterfactual Equilibrium

The counterfactual exercise aims to derive the counterfactual equilibrium without CEI

in 1980-2015. We only allow # Patentjion to be at their levels in 1980 and let other terms in

demand and supply equations stay at their original levels in 2015. The total employment

L is also fixed at its level in 2015.

Following Caunedo et al. (2023), we assume a CES aggregator to make capital bundles

with ϕ = 1.13 as the elasticity of substitution.

kjio =

(∑
n

ξ
1
ϕ

jionx
ϕ−1
ϕ

jion

) ϕ
ϕ−1

(A10)

Additionally, two following equations are needed to run the counterfactual equilibrium.

1 =
αi

αj

(
µio

µjo

) 1
σ
(
Yi

Yj

) 1
σ
−1(

yio
yjo

) 1
ρd

− 1
σ
(
Θ̃io

Θ̃jo

) ρd−ρs
ρsρd

(
lio
ljo

)− 1
ρd

(A11)

Yi = lio

∑
o

µ
1
σ
io

(
lio
li0

)σ−1
σ

ỹ
σ−1
σ

io

 σ
σ−1

= li0Ỹi (A12)

Equation (A11) is derived from the first order conditions of cost minimization with re-

spect to lio and ljo, respectively. Equation (A12) expresses industrial outputs as a linear

function of lio, labor input of a reference occupation 0, and Ỹi that only depends on the

ratio of labor inputs relative to a reference occupation 0. The manager (OCC1990 = 22) is

used as the reference occupation.

By combining Equations (A11) and (A12), the following equation is derived.

1 =
αi

αj

(
µio

µjo

) 1
σ
(
Ỹi

Ỹj

) 1
σ
−1(

ỹio
ỹjo

) 1
ρd

− 1
σ
(
Θ̃io

Θ̃jo

) ρd−ρs
(ρs−1)ρd

(
lio
ljo

)−1

(A13)

We use this equation to pin down the industry-level employment of an occupation.
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G CEI and User Costs of Capital

In this section, we explore in more detail the relationship between CEI and user costs

of capital and the role of user cost changes in labor market trends. First, we summa-

rize changes in user costs associated with CEI. Then, we quantify how user cost changes

alone contribute to heterogeneous labor market trends for different occupations using the

structural model estimated in Section 4.

Table A8 summarizes the actual and counterfactual user costs of capital for selected

NIPA asset types in 1980, 1990, 2000, and 2015. CEI variables are redefined using patents

granted until 1990, 2000, and 2015 relative to patents granted until 1980. Computers ex-

perience the sharpest decline in user costs over time. The baseline estimate γp = −0.41 is

used to calculate counterfactual user costs. Without CEI, computer user costs still show

the largest decline, but the magnitude is much more muted. In fact, along with commu-

nication and photocopy equipment, computer user costs are the most heavily affected by

CEI. Office equipment, metal products, and automobiles have the lowest CEI measures,

and thus their user costs are the least affected by the absence of CEI.

Table A8: CEI and User Costs of Capital

Actual Without CEI

1980 1990 2000 2015 1980 1990 2000 2015

Computers 6.90 3.24 0.71 0.51 6.90 5.15 2.06 1.53
Communication eq. 0.46 0.47 0.34 0.18 0.46 0.64 0.69 0.45
Medical eq. 0.15 0.19 0.20 0.34 0.15 0.26 0.33 0.60
Photocopy eq. 0.29 0.32 0.24 0.38 0.29 0.50 0.57 1.13
Office eq. 0.33 0.38 0.38 0.54 0.33 0.42 0.51 0.72
Metal products 0.08 0.09 0.10 0.32 0.08 0.11 0.14 0.44
Engines 0.07 0.07 0.10 0.29 0.07 0.08 0.15 0.54
Aircraft 0.04 0.06 0.08 0.33 0.04 0.07 0.13 0.67
Electrical eq. 0.15 0.19 0.20 0.40 0.15 0.24 0.32 0.76
Autos 0.13 0.19 0.22 0.42 0.13 0.22 0.31 0.61

Notes. This table shows the average and counterfactual user costs of capital for selected
categories of NIPA capital over time. Counterfactual average user costs are calculated using
patent measures from 1980 relative to 2015 with a price elasticity of γP = −0.41. ‘eq.’ means
equipment.

Table A9 summarizes the changes in user costs for similar and dissimilar capital over
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occupation groups distinguished by task scores, labor share, and wage level. After price-

level adjustments, all occupation groups have declines in user costs of capital. Abstract

and high-wage occupations experience larger reductions in user costs of similar and dis-

similar capital. Routine task scores are not monotonically associated with changes in user

costs, and occupations with high labor shares have greater declines in user costs of dis-

similar capital but smaller reductions in similar capital.

Table A9: User Cost Changes

Similar Dissimilar

Low Middle High Low Middle High

Panel A. Across Abstract Score

-0.29 -0.23 -0.37 -0.34 -0.53 -0.54
Panel B. Across Routine Score

-0.13 -0.34 -0.20 -0.49 -0.48 -0.54
Panel C. Across Labor Share in 1980

-0.41 -0.25 -0.17 -0.38 -0.48 -0.64
Panel D. Across Wage in 1980

-0.24 -0.24 -0.36 -0.36 -0.51 -0.57

Notes. This table summarizes the changes in user costs of similar and dissimilar capital used by
occupations in the first (low), second to fourth (mid) and fifth (5Q) quintiles in the distributions of
task scores, labor share, and wage level in 1980. Changes in user costs adjust for the change in the
CPI between 1980 and 2015.

We repeat the counterfactual exercise with the level of capital user costs fixed at their

levels in 1980. Table A10 compares the resulting task bias of changes in the counterfactual

equilibrium. The effect of user costs on task-biased labor market changes is small because

the estimates for the elasticities of substitution are close to each other and their values

are close to one. In addition, the difference in changes in user costs between occupation

groups is small.

Table A11 summarizes the changes in aggregate labor share and their decomposition

in the data and in counterfactual equilibria without changes in user costs. User costs

alone can generate the historical decline in labor share, larger than the reduction in the

CEI exercise.
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Table A10: Task-Biased Labor Market Changes without Changes in User Costs

Abstract Routine

Employment Wage Employment Wage

Actual Change 0.17 0.44 -0.26 -0.33

Without CEI (η=0.3) 0.17 0.43 -0.26 -0.34
Without CEI (η=1) 0.17 0.43 -0.26 -0.34

Notes. This table shows the actual and counterfactual regression coefficients of the wage and
employment growth rates at the occupation level in the occupational task scores of Autor and
Dorn (2013) as in Equation (20). The counterfactual equilibrium fixes the user costs of all capital
inputs at their levels in 1980. The columns η = 0.3 and η = 1 set the elasticity of the occupational
labor supply at 0.3 and 1, respectively.

Table A11: Declines in Labor Share without User Cost Changes

Within Between All

Actual Change -8.64 -1.24 -9.87

Without CEI (η=0.3) -0.73 0.84 0.11
Without CEI (η=1) -0.70 0.85 0.15

Notes. This table shows the actual and counterfactual changes in the labor share between 1980
and 2015. The counterfactual equilibrium fixes the user costs of all capital inputs at their levels in
1980. Changes in labor share within and between occupations are derived in Equation (21). The
rows labeled ‘Without CEI (η = 0.3)’ and ‘Without CEI (η = 1)’ set the elasticity of occupational
labor supply at 0.3 and 1, respectively.

Lastly, Table A12 summarizes labor market polarization in a counterfactual equilib-

rium with changes in user costs only. The impact of user cost changes is small on polar-

ization statistics.
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Table A12: Polarization without User Cost Changes

Employment Wage

Low Middle High Low Middle High

Actual Change 0.17 -0.58 0.41 -0.03 -0.54 0.57

Without CEI (η=0.3) 0.17 -0.58 0.41 -0.06 -0.50 0.56
Without CEI (η=1) 0.16 -0.58 0.42 -0.05 -0.52 0.57

Notes. This table shows the actual and counterfactual growth rates of the wage and employment
growth of occupations grouped by their wages in 1980. The counterfactual equilibrium fixes the
user costs of all capital inputs at their levels in 1980. The wage and employment changes are
subtracted from the mean and divided by the standard deviation of the changes at the occupation
level in each case. Columns labeled Low and High denote occupations with 1980 wage levels in
the first and fifth quintiles, respectively. The columns labeled middle denote occupations between
the two quintiles. The rows labeled ‘Without CEI (η = 0.3)’ and ‘Without CEI (η = 1)’ set the
elasticity of occupational labor supply at 0.3 and 1, respectively.

65



H Computers and Robots

Computers and robots have been considered one of the most important technological

changes in the labor market (Autor et al., 2003; Acemoglu and Restrepo, 2018; Burstein et

al., 2019). This section summarizes the importance of computers and robots in CEI mea-

sures. Then, we repeat the counterfactual exercise after setting only innovations unrelated

to computers fixed at the level in 1980. Since robots account for a negligible fraction of

CEI, we do not repeat the counterfactual exercise that sets only innovations related to

robots fixed at the level in 1980.

Table A13: Share of Computer and Robot in Matched Patents (%)

1970 1980 1990 2000 2010

Computer 1.56 3.05 9.86 10.13 8.92
Robot 0.27 0.31 0.22 0.22 0.21

Notes. This table displays the shares of computers and robots in patents matched to capital
goods in the UNSPSC. The numbers are in percent. The column titles indicate the decades
for which the patents were applied, except under 2010. Column 2010 collects patents applied
from 2011 to 2015.

Table A13 shows the share of computers and robots in patents matched to capital

goods in the UNSPSC. A capital good is considered a computer if the commodity title is

in the ‘computer equipment and accessories’ family in the UNSPSC (43210000). A capital

good is considered a robot if the title has the words “automatic,” “robot,” or “drone.”

Computers accounted for 1.6% of patents in the 1970s, but their importance steadily in-

creased over time. About 10 percent of patents applied after the 1990s are computer-

related. On the other hand, robots make up only 0.2-0.3% of patents in all columns. Due

to the scarcity of robot-related patents, we exclude robots in the following exercises.

Next, Table A14 summarizes the share of computers in similar and dissimilar capital

stock across occupation groups. Over time, the share of computer stock increased pri-

marily in dissimilar capital, and computers accounted for almost 30% of capital stock in

2015. However, the increase was nearly uniform across task scores. Occupations with low

labor shares still have low shares of computers in total capital in 2015, and occupations

with high labor shares tend to have higher computer intensities at all times.
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Table A14: Computer Stock Intensity across Occupation Groups

Similar Dissimilar

Low Middle High Low Middle High

Panel A. Across Abstract Score

1980 0.00 3.62 0.34 1.73 6.50 6.14
2015 2.73 4.55 2.72 23.11 27.92 22.86

Panel B. Across Routine Score

1980 0.00 3.76 0.06 2.35 6.47 5.66
2015 0.03 5.21 3.76 25.61 24.99 29.36

Panel C. Across Labor Share in 1980

1980 0.29 3.28 1.10 0.03 3.17 17.66
2015 1.79 3.66 6.36 0.67 28.03 45.17

Panel D. Across Wage in 1980

1980 0.00 3.64 0.44 1.50 7.28 4.03
2015 2.75 4.87 1.85 14.56 31.89 20.12

Notes. This table summarizes the share of computers in similar and dissimilar capital over occu-
pations grouped by task scores, labor shares, and wage levels. The columns labeled Low and High
represent the occupations in the first and fifth quintiles, respectively, while those labeled Middle
cover occupations within the second to fourth quintiles. Numbers in percent.

Table A15 demonstrates the importance of computers in CEI for the occupation groups

in Table A14. Computers made up a small fraction of patents on dissimilar capital for all

occupation groups in 1980. In 2015, because computers are knowledge-intensive capital

goods, computers represented a large fraction of patents related to dissimilar capital, ex-

cept for occupations with low labor shares and low wages in the first quintile. Still, since

computers are used by all occupations, their importance in CEI is relatively stable across

occupations grouped by task scores.

To quantify the impact of computer-related innovation on labor market changes, we

re-calculate the counterfactual equilibrium without changes in computer-related patents

between 1980 and 2015. All other patents remain in 2015. Table A16 displays the coeffi-

cient estimates of task scores on wage and employment changes in counterfactual equi-

librium. Without increases in computer-related patents over time, labor market changes

would have been less biased towards abstract and against routine occupations, but the
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Table A15: Shares of Computer-Based Patents across Occupation Groups

Similar Dissimilar

Low Middle High Low Middle High

Panel A. Across Abstract Score
1980 0.00 5.31 1.80 1.62 8.73 17.30
2015 3.14 6.49 2.65 10.60 27.70 27.09

Panel B. Across Routine Score

1980 0.00 4.24 0.48 11.92 9.90 2.19
2015 0.00 5.10 7.42 24.22 22.42 28.63

Panel C. Across Labor Share in 1980

1980 0.18 4.62 2.39 0.65 9.29 15.98
2015 0.75 5.31 10.87 2.31 25.93 40.63

Panel D. Across Wage in 1980

1980 0.00 4.75 1.99 3.15 8.89 14.68
2015 3.30 6.37 2.39 8.44 28.34 27.29

Notes. This table summarizes the share of computers in matched patents of occupations grouped
by task scores, labor shares, and wage levels. The columns labeled Low and High represent the
occupations in the first and fifth quintiles, respectively, while those labeled Middle cover occupa-
tions within the second to fourth quintiles. The numbers are in percent.

magnitude of the change is much smaller than in Table 6. Thus, the contribution of

computer-related innovations is limited. This is again because almost all occupations

use computers, and computers are almost uniformly important in CEI measures.

Table A16: Task-Biased Labor Market Changes without Computer-based CEI

Abstract Routine

Employment Wage Employment Wage

Actual Change 0.17 0.44 -0.26 -0.33

Without CEI (η=0.3) 0.18 0.22 -0.25 -0.14
Without CEI (η=1) 0.16 0.25 -0.22 -0.17

Notes. This table shows the actual and counterfactual regression coefficients of the wage and
employment growth rates at the occupation level in the occupational task scores of Autor and
Dorn (2013) as in Equation (20). The counterfactual equilibrium uses CEI measures that fix only
patents unrelated to computers at their levels in 1980. The rows labeled ‘Without CEI (η = 0.3)
and ‘Without CEI (η = 1) set the elasticity of occupational labor supply at 0.3 and 1, respectively.

Table A17 shows the changes in the labor shares without computer-based CEI. Simi-
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larly to the task exercise, computer-based CEI generates a much smaller fraction of actual

declines in labor shares.

Table A17: Declines in Labor Share without Computer-based CEI

Within Between All

Actual Change -8.64 -1.24 -9.87

Without CEI (η=0.3) -7.18 -0.80 -7.97
Without CEI (η=1) -7.21 -0.76 -8.34

Notes. This table shows the actual and counterfactual regression coefficients of the wage and
employment growth rates at the occupation level in the occupational task scores of Autor and
Dorn (2013) as in Equation (20). The counterfactual equilibrium uses CEI measures that fix only
patents unrelated to computers at their levels in 1980. The rows labeled ‘Without CEI (η = 0.3)
and ‘Without CEI (η = 1) set the elasticity of occupational labor supply at 0.3 and 1, respectively.
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Lastly, Table A18 describes counterfactual changes in employment and wage growth

between occupations grouped by their wages in 1980. The results imply that computers

played a small role in generating labor market polarization. According to Table A18,

when computer-based innovations are back to the level of 1980, the employment growth

of high-wage occupations in the fifth quintile barely changes. This again comes from

computers being widely used as dissimilar capital and the intensity of computers in CEI

being nearly uniform over the second to the fifth quintiles of 1980 wage levels.

Table A18: Polarization without Computer-based CEI

Employment Wage

Low Middle High Low Middle High

Actual Change 0.20 -0.61 0.41 -0.04 -0.53 0.57

Without CEI (η=0.3) 0.21 -0.61 0.40 0.01 -0.36 0.35
Without CEI (η=1) 0.21 -0.59 0.38 -0.00 -0.39 0.39

Notes. This table shows the actual and counterfactual growth rates of the wage and employment
growth of occupations grouped by their wages in 1980. The counterfactual equilibrium uses CEI
measures that fix only patents unrelated to computers at their levels in 1980. The wage and em-
ployment changes are subtracted from the mean and divided by the standard deviation of the
changes at the occupation level in each case. Columns labeled Low and High denote occupations
with 1980 wage levels in the first and fifth quintiles, respectively. The columns labeled middle
denote occupations between the two quintiles. The rows labeled ‘Without CEI (η = 0.3)’ and
‘Without CEI (η = 1)’ set the elasticity of occupational labor supply at 0.3 and 1, respectively.
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