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Abstract
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1 Introduction

Labor markets in developed economies have shown secular trends since the late

20th century. One of the labor market trends that drew the most attention in eco-

nomics is the task-biased nature; employment share decreases for occupations that

involve more routine tasks, which can be accomplished with explicitly programmed rules

(Autor et al., 2003), but employment share increases for more abstract tasks that re-

quire managerial, interactive, and formal reasoning requirements (Autor and Dorn, 2013).

To show this trend, Figure 1 plots the OLS coefficient of task scores on cumulative

log employment growth since 1980 at the occupation level. In 2000, one standard

deviation higher routine task score predicts 10 percent smaller employment growth

while one standard deviation higher abstract task score predicts 13 percent larger

employment growth. The coefficient estimates become further larger in 2015, im-

plying that the task-biased labor market changes are accumulated over time.

Previous studies have found the source of this biased labor market change on the

demand side. The measured productivity in the aggregate production function de-

creases (increases) disproportionately more for occupations with routine (abstract)

task components, which is called task-biased technical change. The literature often

emphasizes the role of new technologies in task-biased technical changes and fo-

cuses on a few episodes of new technologies, such as computerization (Autor et al.,

2003) and automation (Acemoglu and Restrepo, 2018).

This paper also explores the technological origin of labor market changes but

considers more comprehensive technologies than new robots and computers. Specif-

ically, this paper constructs a measure of capital-embodied innovation (CEI) us-

ing patent data and associates the measure with the task content of labor market

changes. The measure is calculated as the number of patents matched to a capital

good variety through a text-based matching between the abstracts of patents from

the United States Patent and Trademark Office (USPTO) and that of capital goods

from Wikipedia. Using the heterogeneous capital mix for different occupations from

the Occupational Information Network (O*NET), heterogeneous exposures to CEI

2



Figure 1: Coefficient of Task Scores on Cumulative Employment Growth Over Time
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Notes: The Y axis is the coefficient estimate of task scores on cumulative employ-
ment growth from 1980 observations from a univariate OLS regression at the oc-
cupation level. Task scores are normalized to have a unit standard deviation. Each
observation is weighted by its employment in 1980.

are measured at the occupation level. This measure is then used in an estimated

model of the occupational labor market to study how the task-biased nature of la-

bor market changes would have looked without CEI.

This paper contributes to the literature by studying whether occupational het-

erogeneity of capital deepening can constitute task-biased labor market changes.

Specifically, our approach complements a recent paper by Caunedo et al. (2021),

which stresses the role of declines in capital prices. They also use the mapping be-

tween capital goods and occupations from O*NET to measure yearly series of capi-

tal stock and prices across different occupations with the fixed asset series of NIPA.

From this data, they study how decreases in capital prices affect the labor demand

at the occupation level. They discover that the heterogeneous reductions in capital

prices, as well as the heterogeneous elasticity of substitution with capital, generate
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the vast majority of labor market polarization during the last few decades.

This paper studies a related but more fundamental source of capital deepening:

innovation. Reductions in capital prices can come from many different sources, such

as CEI, trade, and changes in market structure. A measure of CEI helps to quantify

the contribution of technological factors to price changes and capital deepening.

Identifying specific sources of capital deepening and biased technical changes is im-

portant for policy evaluations. If decreases in the price of capital result from innova-

tions and innovations of capital goods used by skilled, high-wage, and abstract-task

occupations respond more elastically to innovation subsidies, innovation policies

lead to unequal consequences in the labor market.

Moreover, CEI can capture changes in measured productivity of quality-adjusted

capital stock in the production function, which also contributes to capital deepen-

ing. Robot innovations, for example, not only lower the price of robots but also

make it possible for robots to perform more complex and diverse tasks. Then, the

demand for robots increases more than the price reduction implies. If adopting

new robots increase coordination and management costs at factories, then the de-

mand for robots increases less than the price reduction implies. The measure of

CEI developed in this paper gives a comprehensive view of the source of capital

deepening.

The key issue in identifying the effect of CEI on labor demand is that capital

goods often have different substitutability with labor. Even the same capital good

has a different relationship with various occupations. Robots, for example, are sub-

stitutes for manufacturing workers but are complements to robot engineers. Like-

wise, computers, as noticed by Autor et al. (2003), are substituting routine occu-

pations disproportionately more. One occupation can have both substitutable and

complementary capital goods.

In order to address this issue, this paper proposes a novel way to categorize

capital-occupation relations based on the substitutability between capital and labor

inputs. It is argued that what determines substitutability is the degree of similarity
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between the functions of capital goods and occupational tasks. Practically, if the

Wikipedia description of a capital good is similar to the task description of an oc-

cupation from O*NET, the capital-occupation pair is classified as task-substituting.

In other cases, capital is defined as task-complementing for labor inputs. These two

capital categories have different elasticities of substitution with occupational labor

inputs. Moreover, CEI has different impacts on occupational labor demand depend-

ing on the category of the capital good.

This paper builds a static general equilibrium model with the occupational la-

bor market to quantify the importance of CEI on changes in the labor market be-

tween the early 1980s and the late 2010s. Production takes occupational task com-

posites, which require occupational labor inputs along with task-substituting and

task-complementing capital goods. Task-substituting and task-complementing cap-

itals are allowed to have different elasticity of substitution with labor in the produc-

tion function specification.

Parameters of the model are estimated using the Generalized Method of Mo-

ments (GMM). A potential endogeneity problem is that occupation-specific produc-

tivity and supply shocks can be correlated with patent activities. To tackle this prob-

lem, this paper constructs shift-share instruments using citation shares of patent

classes across different academic fields and growth rates of academic publications

that generate knowledge spillover to patents. To create a plausibly exogenous vari-

ation in CEI measures, only academic publications from European institutions are

used to calculate the growth rates of academic publications.

The estimated model is used to evaluate the impact of CEI on various labor mar-

ket trends. Specifically, CEI measures are fixed at their 1980s levels to calculate the

counterfactual equilibrium with only changes in the demand and supply residu-

als from the estimated model. The counterfactual equilibrium is compared to the

actual data in the late 2010s in terms of task-biased labor market changes and job

polarization.

The estimation results show that the elasticity of substitution between labor and
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task-substituting capital is larger than the cross-elasticity between occupational in-

puts. Moreover, the elasticity of substitution between labor and task-complementing

capital is smaller than the elasticity of substitution across different occupational

tasks. In this case, the CEI on task-substituting capital (CEI-s) reduces relative labor

demand, and the CEI on task-complementing capital (CEI-c) raises relative labor

demand.

From the estimated model, we find that CEI is task-biased in two senses. First,

CEI is higher for abstract and non-routine occupations, regardless of the capital type.

This raises relative labor demand for abstract and non-routine occupations because

CEI-c has a stronger effect on relative labor demand. Furthermore, routine and non-

abstract occupations are more intensive in task-substituting capital, which reduces

relative labor demand. Thus, a uniform CEI on task-substituting capital reduces

labor demand for routine and non-abstract occupations.

The counterfactual exercise reveals that the labor market would have experi-

enced smaller task-biased changes without CEI, especially toward abstract occu-

pations. The employment growth would have been 61% less biased towards ab-

stract occupations without CEI. The routine-biased employment changes would

have been smaller by 31%, and the degree of job polarization would have been

smaller without CEI.

Related Literature

This paper first contributes to the literature on secular shifts in labor demand by

offering a framework to understand the forces behind the changes in labor demand.

Overall, the labor demand has shifted to more educated and skilled workers with

higher wages, as in Katz and Autor (1999) and Acemoglu and Autor (2011). At the

same time, middle-wage occupations are losing their importance relative to high-

and low-wage occupations in the United States. This so-called job polarization was

first documented by Autor et al. (2006) in the United States and later shown to be

a pervasive phenomenon in European countries by Goos et al. (2014). Using CEI,
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this paper studies whether a technological factor can explain secular trends in labor

market demand.

Two economic forces are emphasized in explaining the source of these labor

market trends: technological improvements and globalization. First, new technolo-

gies are considered more complementary to skilled workers and non-routine occu-

pations (Nelson and Phelps, 1966; Krusell et al., 2000; Autor et al., 2003). Second,

trade and outsourcing with developing countries disproportionately increase sup-

plies for unskilled workers and low-wage occupations, reducing their relative pro-

ductivity in the aggregate production function of developed countries (Acemoglu,

2003; Dix-Carneiro and Kovak, 2015; Burstein and Vogel, 2017). While the trade hy-

pothesis can be easily tested and quantified using trade data, studies that emphasize

the role of technological factors have a hard time testing their hypothesis.

This paper speaks to the first literature that studies technological factors behind

labor market changes. Previous studies often focus on a few episodes of techno-

logical changes, such as computerization by Autor et al. (2003) and automation by

Acemoglu and Restrepo (2020). They measure exposures to technological changes

and associate these exposures with outcome variables in the labor market. Autor

et al. (2003) use worker-level computer adoption dummies from the U.S. Current

Population Survey to measure computerization. Acemoglu and Restrepo (2020) use

the data about the number of robots from the International Federation of Robotics to

measure the automation of industry and exposure of local labor markets to robots.

Recent papers study the effect of adopting artificial intelligence in the workplace,

such as Webb (2019). The CEI measure developed in this project covers more exten-

sive technology improvements by including a broader set of capital.

This paper joins the recent literature on the aggregate production function with

occupational inputs such as Caunedo et al. (2021). The structure is comparable to

the task-based approaches which became increasingly popular after the 2000s. Since

the seminal work by Autor et al. (2003), the unit of analysis for the impact of tech-

nical changes on the labor market has been a task, which is often categorized as
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routine, cognitive, abstract, or manual. Technical changes in computerization or

robotization are regarded as increases in the capital that substitutes labor inputs in

cognitive and manual tasks. These task-based approaches offer a powerful frame-

work for the analysis of labor-substituting technologies both empirically and theo-

retically (David, 2013; Acemoglu and Restrepo, 2018; Cortes et al., 2017). This paper

contrarily focuses on broader technologies that can both increase and decrease labor

demand, and the unit of analysis is occupation-specific tasks. Occupation is a more

informative unit of analysis in this case because of variations in capital goods used

across different occupations. As long as some capital goods have more technical

changes than others and those capital goods are used by only a subset of occupa-

tions, the differences in wage or employment changes can be regressed on those

innovations in capital goods even when both occupations have non-routine and ab-

stract tasks.

Lastly, this paper is related to a growing literature that applies textual analysis

to patent data (Kelly et al., 2021; Argente et al., 2020; Zhestkova, 2021; Bloom et al.,

2021). Webb (2019) and Kogan et al. (2019) are the most relevant papers to this pa-

per. Webb (2019) studies innovations in AI and robots, and Kogan et al. (2019) study

a broader set of technologies and their effects on the labor market. While these

papers match patents with the occupation’s task descriptions to measure the expo-

sure to technologies, patents are matched with capital goods used by occupations

to measure capital-embodied innovation. By doing so, the innovation measure also

includes new technologies that do not overlap with occupational tasks but are still

used by occupational workers in the form of better and cheaper capital. Further-

more, new technologies have heterogeneous effects depending on whether the capi-

tal containing the new technology has similar functions as occupational tasks.

The remainder of the paper is organized as follows. Section 2 explains the em-

pirical framework. Section 3 describes the data used for the analysis, estimation

strategy, and estimation results. Section 4 presents the results from counterfactual

exercises. Section 5 concludes.
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2 Empirical Framework

2.1 Overview

The economy is static and consists of firms and workers. Final goods are pro-

duced with industrial outputs. Firm in each industry combines occupational-level

task inputs to make industrial outputs. Occupation-level task inputs are made with

capital goods and labor1. For example, an aerospace company combines tasks from

aerospace engineers, engine mechanics, and janitors to produce its goods. The pro-

duction of engine mechanics’ task inputs requires not only engine mechanics but

also services from capital goods such as pressure indicators and wire cutters.

Two types of capital goods enter the production of an occupational task depend-

ing on its relationship with the occupational task. First, task-substituting capital

goods perform similar functions as occupational tasks. Second, task-complementing

capital goods perform functions that are distinct from occupational tasks. One capi-

tal good can be task-substituting for an occupation but task-complementing for an-

other. For engine mechanics that perform the maintenance of an engine, the engine

test stand is a task-substituting capital good. For aerospace engineers that develop

new aircraft, the engine test stand is a task-complementing capital good.

The labor market is distinguished by occupations but not by industries. Thus,

the wage is equalized for an occupation across industries, and workers are indif-

ferent across industries. Workers choose one occupation that gives them the highest

utility after taking wages and idiosyncratic utility into account. Firms from different

industries come to the labor market and hire workers of different occupations at a

set of competitive prices that clears all occupation-level labor markets.

Capital goods are elastically supplied at fixed user costs. Different occupations

require different bundles of capital goods with different user costs. Also, different

industries require different intensities of capital goods even for a given occupation.

Thus, the user costs of capital goods differ across occupations and industries.

1The tasks are differentiated across occupations.
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In this economy, CEI affects relative labor demand in three channels. First, CEI

changes the user costs of capital bundles. CEI can lower the price of capital bundles

and increase the depreciation rate of existing capital. Thus, it is ambiguous whether

CEI increases or decreases user costs of capital. Second, CEI changes the produc-

tivity of capital bundles in the production function, which is not captured in user

costs of capital. Third, CEI directly affects the relative demand for occupational task

inputs. Innovation can increase the range in which occupational labor inputs are

used in the production function, which is not captured by changes in user costs and

productivity of capital. The third channel also captures the misspecification of the

nested CES production function.

2.2 Production of Capital

Competitive capital good producers combine different capital goods to make oc-

cupation and industry specific bundles of task-complementing and task-substituting

capital. Different capital goods are combined with Leontief technology to produce

capital bundle, kjio of type j which is used by occupation o in industry i as fol-

lows:

kjio = Z ·min{xjio1/κjio1, . . . , xjioN/κjioN} , (1)

where Z is the factor-neutral conversion rate between capital inputs and capital

bundle, xjion is the amount of capital goods used, and κjion is the fixed-cost share

of capital good n in the composition of capital type j.
∑

n κjion = 1. j takes two

values, s and c. j = s denotes task-substituting capital and j = c denotes task-

complementing capital.

Non-arbitrage condition is given as
∑

n qnκjion = QjioZ, where Qjio is the price

of capital bundle and qn is the price of capital good n. The user cost of the capital
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bundle is given by the zero profit condition:

rjio =
∑

δin
xjionqn
kjio

(2)

=
∑

δin
xjionqn
kjioQjio

Qjio

≡ δ̄ioQjio,

where δin is the depreciation rate of capital good n in industry i. The user cost of

capital bundle is the product between capital bundle price and the average user cost

of individual capital goods weighted by their cost shares, δ̄io.

The technology base for the capital bundle is an arithmetic average of knowl-

edge base for individual capital goods.

Pjio =
N∑
n=1

xjion
kion

#Patentn =
N∑
n=1

κjion#Patentn , (3)

where #Patentn is a measure of capital-embodied knowledge base for capital good

n and defined in Section 3.1 as the average number of patents applied to capital type

n. From now on, the technology base index Pjio is defined as CEI-j (j = s or c; s for

task-substituting capital and c for task-complementing capital). This expression for

technology base enters the price of capital bundles, rjio, as well as the productivity

of the capital bundle, zjio as follows:

log rjio = −γ1j logPjio + logωjio1, (4)

log zjio = γ2j logPjio − logωjio2, (5)

where ωjio1 and ωjio2 are components of capital price and productivity that are not

explained by CEI. A positive γ1j implies that the user cost of capital bundle is lower

with CEI-j. This happens when the price of capital gets cheaper. On the other

hand, γ1j can be negative if deprecation rates for existing capital increase sharply

with CEI. For example, the innovation in computer technology made the price of
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computer service much cheaper than before. At the same time, existing computer

stocks depreciate at a faster rate.

A positive (negative) γ2j implies that the productivity of quality-adjusted capital

stock increases (decreases) with CEI-j. The productivity of quality-adjusted capital

stock does not necessarily increase with CEI like user costs of capital. A smaller

computer reduces the maintenance cost of computer system. At the same time, a

more sophisticated computer technology implies that firms have to offer training to

workers to cope with a new technology.

2.3 Labor Demand

Aggregate output is a Cobb-Douglas composite of industrial outputs as

Y =
∏
i

Y αi
i . (6)

Industrial outputs are made of occupational inputs with a constant elasticity of sub-

stitution.

Yi =

(∑
o

µioy
σ−1
σ

io

) σ
σ−1

, (7)

where µio is the occupation demand shifter. Occupational inputs yio is defined

as

yio =

z ρc−1
ρc

cio k
ρc−1
ρc

cio +

(
z
ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs
ρs−1

ρc−1
ρc


ρc
ρc−1

, (8)

where kcio is task-complementing capital, zcio is its productivity, ksio is task-substituting

capital, zsio is its productivity, and lio is the labor. Following in Krusell et al. (2000),

the nested CES structure allows different substitutability between production in-

puts. ρs governs the elasticity of substitution between task-substituting capital and

labor, while ρc governs the elasticity of substitution between task-complementing
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capital and labor. The nested CES structure implies that the elasticity of substitution

between task-complementing capital and task-substituting capital is also ρc.

A representative firm chooses labor and capital inputs to maximize profit. When

firms solve the problem, input ratios between occupational labor and capital are

determined with relative input prices as follows:

rsio
wo

= z
ρs−1
ρs

sio

(
ksio
lio

)− 1
ρs

, (9)

rcio
wo

=

(
z
ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs−ρc
(ρs−1)ρc

z
ρc−1
ρc

cio k
−1
ρc
cio l

1
ρs
io . (10)

Θio is defined as the output of the inner CES composite per worker as below:

Θio :=

(
z
ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs
ρs−1

/lio

=

z ρs−1
ρs

sio

(
ksio
lio

) ρs−1
ρs

+ 1


ρs
ρs−1

. (11)

Plugging the optimal input ratio from Equation (9) into Equation (11), along with

Equation (4), the following equation is derived.

Θio =

(
zρs−1sio

(
rsio
wo

)1−ρs
+ 1

) ρs
ρs−1

=

(
P
γ̃s(ρs−1)
sio

(
ω̃sio
wo

)1−ρs
+ 1

) ρs
ρs−1

. (12)

In this equation, γ̃s is the sum of γ1s and γ2s , and ω̃sio is the sum of ωsio1 and ωsio2. If

γ̃s > 0 and ρs > 1, Θio increases in Psio unambiguously. In words, γ̃s = γ1s + γ2s > 0

implies that the price of capital per productivity unit is cheaper with more CEI.

Then, the same labor input can produce more inner composites for occupational
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task input production. Lastly, the following equation arrives after Equation (11)

and (12) are plugged into Equation (10):

rcio
wo

= Θ
ρs−ρc
ρsρc
io z

ρc−1
ρc

cio

(
kcio
lio

)− 1
ρc

=

(
P
γ̃s(ρs−1)
sio

(
ω̃sio
wo

)1−ρs
+ 1

) ρs−ρc
(ρs−1)ρc

z
ρc−1
ρc

cio

(
kcio
lio

)− 1
ρc

. (13)

Equation (13) expresses how the input ratio between task-complementing capi-

tal and labor is determined after inner optimization. Whether CEI-s raises or reduces

labor intensity relative to task-complementing capital depends on the sign of ρs−ρc.
CEI-s stimulates substitution towards task-substituting capital and reduce relative

labor demand for a given demand for inner CES composite. On the other hand, CEI-

s lowers shadow price of the inner CES composite and increases overall demand for

the inner composite. If ρs > ρc, the former effect dominates, and vice versa.

ỹio := yio/lio is defined as as the output per worker. Using the expressions of

optimal input ratios, Equation (8) is further written as follows.

ỹio = Θ
ρs−ρc
ρs

io

(
zρc−1cio

(
rcio
wo

)1−ρc
+ Θ

ρc−1
ρs

io

) ρc
ρc−1

= Θ
ρs−ρc
ρs

io

(
P
γ̃c(ρc−1)
cio

(
ω̃cio
wo

)1−ρc
+ Θ

ρc−1
ρs

io

) ρc
ρc−1

. (14)

Derivation is in Equation (32) in Appendix A.1. ỹio depends only on the input prices

but not input quantities. Again, γ̃c is the sum of γ1c and γ2c , and ω̃cio is the sum of

ωcio1 and ωcio2. If γ̃c > 0 and ρc > 1, ỹio increases with CEI-c. ỹio also increases with

Θio unambiguously for fixed prices. Importantly, d log ỹio/d log Θio < 1.

Lastly, when we solve the representative firm’s problem, the labor demand across
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occupations within an industry is given by

wo
wp

=
µio
µip

(
yio
yip

)− 1
σ
+ 1
ρc

(
z
ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρc−ρs
(ρs−1)ρc

(
z
ρs−1
ρs

sip k
ρs−1
ρs

sip + l
ρs−1
ρs

ip

) ρc−ρs
(ρs−1)ρc

(
lio
lip

)− 1
ρs

(15)

=
µio
µip

(
ỹio
ỹip

)− 1
σ
+ 1
ρc Θ

ρc−ρs
ρsρc
io

Θ
ρc−ρs
ρsρc
ip

(
lio
lip

)− 1
σ

. (16)

Derivation is in Equation (33) in Appendix A.1. Equation (16) shows that the in-

crease in ỹio from CEI-c increases relative labor demand for o if σ > ρc, as in Caunedo

et al. (2021). If σ > ρc, the demand for the occupational inputs increases more

elastically than the substitution toward task-complementing capital, increasing rel-

ative labor demand. An increase in Θio from CEI-s raises both ỹio and Θio. Since

d log ỹio/d log Θio < 1, ρs > σ implies that CEI-s reduces relative labor demand.

Thus, the estimated values of elasticities determine how labor demand responds

to capital-embodied productivity changes.

Psio directly affects labor demand across occupations by changing µio as

log µio = γ3s logPsio + γ3c logPcio + logωio3 , (17)

where ωio3 is the unexplained component of the occupation demand shifters. A

positive γ3j implies that the occupational task inputs become more valuable in the

production with more CEI than the decrease in the production cost predicts and vice

versa.

2.4 Labor Supply and Equilibrium

The supply side follows the standard discrete choice model pioneered by Mc-

Fadden (1973). The economy has an exogeneously given L amount of ex ante homo-

geneous workers indexed by i ∈ [0,L]. Worker i observes wage of each occupation
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determined in the market, wo, occupation-specific utility ξo, and idiosyncratic utility

realized for each occupation νio. The worker chooses an occupation that gives the

highest utility. Workers have the same wage and utility component across industries

for a given occupation. Thus, they are indifferent across industries after choosing

an occupation. The occupation choice problem can be written as the follows:

o∗ = argmax
o
{logwo + log ξo + νio} . (18)

Assuming that νio follows an i.i.d. Type 1 Extreme Value Distribution with scale

parameter 1/β , the following iso-elastic labor supply function is derived.

Lo
L

=
exp(β logwo + βξo)∑
p exp(β logwp + βξp)

. (19)

The labor market equilibrium consists of occupational wages that equate the labor

supply to the labor demand from industry-level demands for each occupation.

3 Estimation

3.1 Data

First, a list of capital goods used at the occupation level comes from “Tools”

data in O*NET.2 O*NET collects capital goods such as machines or equipment that

are essential to perform their occupation roles (Dierdorff et al., 2006). For example,

aerospace engineers use capital goods such as lasers, and construction laborers use

asphalt saws. There are 775 occupations, and each of them has 39 capital goods on

average.3 There are 4,180 unique capital goods in the data. Capital goods have their

title and United Nations Standard Products and Services Code (UNSPSC).

Patent data from the United States Patent and Trademark Office (USPTO) are
2Version 25.0 updated in August 2020 is used for the exercise.
3Median is 29, and the standard deviation is 36.4.
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used to measure innovation.4 It has the universe of patents registered in the U.S. The

exercise uses application year, technology classes, type of patents, title, and abstract

of patents. Application year instead of grant year is used since the application year

is closer to the actual innovation year. Samples are restricted to utility patents and

design patents are excluded to focus on quality improvement. As a result, the data

contains 6.1 million patents from 1970 to 2015.

Microdata from the Census Bureau is used to construct employment by occu-

pation, industry, and year. Microdata is downloaded from the Integrated Public

Use Microdata Series (IPUMS). For occupational employment at the industry level,

this exercise uses Decennial Census of 1980 and the American Community Survey

(ACS) from 2015 to 2019 for observations in 1980, and 2015, respectively.5 Employ-

ment is measured by the number of people with the occupation and the industry

codes. Each observation is weighted by individual sampling weights from the Cen-

sus Bureau. Decennial Census and the ACS are also used to construct immigrant

supply shock measures in Section 3.4.2.

Occupational mean wage comes from the microdata for the Annual Social and

Economic Supplement of the Current Population Survey. The wage is measured by

the average weekly wage earnings and computed as the annual labor income di-

vided by the number of weeks worked last year. The occupation code last year as

surveyed by the CPS are used. Since this is the wage of the last year, five-year obser-

vations from 1971 to 1975 are used to measure the average wage of 1970. Wages from

different years are adjusted with the CPI to the base year6. In order to address het-

erogeneous labor market productivity across workers with different characteristics,

wages are residualized using the Mincerian regression controlling for age (each age

enters as dummies), education level, sex, race, industry, and time fixed effects.

4Bulk file is downloaded through patentsview.org.
5The ACS samples from multiple surveys are used to increase the size of the samples used in each

occupation and skilled labor cell.
6The CPS-ASEC are not used to measure employment at the occupation and industry level be-

cause of its small sample size. The wage variables from the ACS and Decennial Census are not used
because the wage variables last year are measured without information on the occupation the last
year.
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The exercise includes only workers younger than 65 years old and older than 24

years old. To calculate the mean wage at the occupation level, only samples with 40

weeks of work or more in the previous year are considered. Samples are dropped

if they have zero or missing labor income. Observations are excluded from samples

if the nominal hourly wage is lower than 50% of the federal minimum wage of the

corresponding year.

The occupation and industry codes are harmonized using the OCC1990 and the

IND1990 variables provided by the IPUMS. The 2010 Standard Occupational Clas-

sification Code (SOC Code) on O*NET data is converted to the OCC1990 variable

using correspondence between the OCC1990 and the 2010 SOC Code variables in

the ACS 2012-2018. Likewise, the IND1990 variable is converted to the NAICS code

using the correspondence between the IND1990 and the NAICS variables. Then, the

NAICS variable is aggregated to the 63 NAICS industries in National Income and

Product Accounts (NIPA) by the Bureau of Economic Analysis (BEA).

Capital stocks and user costs of capital at the occupation and industry level are

imputed in a similar to Caunedo et al. (2021). The quantity of capital stock is mea-

sured by the fixed-cost capital estimates in the 2012 US dollar from the BEA at the

industry level over different capital goods categories. Calculation of depreciation

rates uses current-cost capital stock and capital depreciation series. For details on

the imputation process, see Appendix A.2.

Lastly, the task scores and the offshorability of tasks at the occupation level are

from Autor and Dorn (2013). They follow Autor et al. (2003) to measure routine,

abstract, and manual task scores from job task requirements from the Dictionary

of Occupational Titles by the US Department of Labor. Specifically, the abstract

task score is measured as an arithmetic average of the DCP (direction, control, and

planning of activities) and GED-MATH (quantitative reasoning requirements). The

routine task score is computed as an arithmetic average of STS (adaptability to work

requiring set limits, tolerances, or standards) and FINGDEX (finger dexterity). The

manual task score comes from EYEHAND (eye, hand, foot coordination) from Autor

18



et al. (2003). Offshorability index is an average between face-to-face contact and on-

site job variables constructed from O*NET by Firpo et al. (2011).

3.2 Task-Complementing and Task-Substituting Capital

Capitals for each occupation are categorized into two groups: task-substituting

capital and task-complementing capital. The description of capital goods are com-

pared to the tasks of the occupation. The capital is considered as task-substituting

if they are similar and task-complementing if they are not similar. The basic idea is

that if the function of the capital is similar to the tasks of the occupation, the capital

goods can substitute labor. On the other hand, if the function of the capital is not

similar to the task of occupation, but the occupation still uses the capital, it is less

likely to substitute labor. A capital good can be task-substituting to one occupation

but task-complementing to another occupation because different occupations have

different tasks.

This paper uses “Task Statements” data that has a list of tasks of the occupa-

tion from O*NET.7 Each occupation has 22.9 tasks on average.8 For example, an

aerospace engineer has tasks such as “Evaluate product data or design from inspec-

tions or reports for conformance to engineering principles, customer requirements,

environmental regulations, or quality standards”.

For descriptions of capital goods, Wikipedia pages of capital goods are used.9

Wikipedia has a broad coverage of products, and its articles usually include a tech-

nical description, which makes it easy to match with patents. The title of a capital

good is searched using Wikipedia API and download the entire text of the corre-

sponding article.10 Among 4,180 capital goods, Wikipedia pages for 1,825 capital

goods are found.

7Version of 25.0, updated in August 2020, is used.
8Median is 23 and the standard deviation is 6.45
9O*NET provides only the title of the capital goods, not a description.

10wikipediaapi package in Python, https://pypi.org/project/wikipedia/, The data on
02/28/2021 downloaded.
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This paper calculates text similarity to match different texts following the litera-

ture, such as Argente et al. (2020) and Kogan et al. (2019). Specifically, the similarity

is calculated between all the tools used by occupation with all the tasks in our data.

As a result, similarity scores are calculated at the capital-task level. Then, for each

capital-occupation pair, the similarity from the task level is aggregated to the occu-

pation level with a uniform weight. As a result, similarity score is calculated at the

tool-occupation level.

Before matching the two texts, the following common procedure in natural lan-

guage processing literature is used to clean the texts. First, “stopwords” are re-

moved. “stopwords” are the most common words in English and do not have im-

portant meanings. For example, “is”, “where”, and “have” are classified as “stop-

words”. These words are removed to avoid matching two texts just because they

share a lot of the function words but do not share meaningful words. Then, words

are lemmatized to convert words into their standard form.11 For example, “generat-

ing” or “generated” is changed to “generate”. Lemmatizing helps to match words

that have the same meaning but in different forms.

Next, the pairwise similarity is calculated between tasks and capital goods. Specif-

ically, each text is vectorized to compute cosine similarity. This cosine similarity

represents the share of overlapped single words or bigrams between two texts.12 To

incorporate the fact that the importance of words would be smaller if they are used

commonly, the term frequency-inverse document frequency (TF-IDF) is used to ap-

propriately weigh words. ωij which is the weight of words i in document j, is as

below.
ωij = TFij · IDFi,

TFij =
fij∑
i fij

,

IDFi = log(
J∑

j 1{i ∈ j}
) ,

(20)

11The spacy package in python is used for this. https://spacy.io/
12Bigrams is a combination of two words such as “combustion engine”, “air fuel”.
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Figure 2: Distribution of Similarity of Capital-Occupation Pairs
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Notes: the graph shows density of similarity between capital goods and occupation
tasks. The text similarity between description of capital goods and each task of occupa-
tion is calculated and aggregated at the capital-occupation level.

where J is the number of total documents. Therefore, IDFij is higher when the

bigram frequently appears in the document but is lower when it appears in other

documents as well. This transformation helps us to match two texts that have mean-

ingful common words. The final similarity is between 0 to 1 by construction. If the

score is 0, there is no common word, and if the score is 1, the two texts are identi-

cal.

Figure 2 shows the distribution of similarity between capital goods and occu-

pations. The distribution is right-skewed as a lot of capital-occupation pairs do not

have overlapping words. A capital good is considered task-substituting to the oc-

cupation if the similarity is more than the 95th percentile and the remaining capital

goods as task-complementing13. Figure 2 also describes several examples of capital-

13The 95th percentile is 0.023 and close to the threshold used to match Wikipedia articles to patents
below. This high threshold ensures that the two different types of capital have opposite effects on
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occupation pairs. In this graph, smoke detectors are task-complementing for heating

technicians but task-substituting for fire inspectors.

3.3 Construction of CEI Measure

The measure of the capital embodied innovation is calculated from patent data.

To be specific, the text similarity is computed between patent texts and the descrip-

tions of capital goods to count the number of patents corresponding to each capital

good. Then, the average number of patents per capital good is calculated at the

occupation and capital group level. Since capital goods are categorized into two

groups, two measures of innovation are constructed for each occupation: innova-

tion on task-complementing capital and task-substituting capital.

The same procedure in the previous section is followed to calculate text similar-

ity between the patent and capital. The title and the abstract of patents are used for

this exercise. Using the computed similarity, patents are assigned to capital. Some

innovations might not be relevant to any of the capital in the data, and some in-

novations might be relevant to many capital goods. Therefore, multiple matching

or non-matching is allowed depending on the similarity score. At most five capital

goods are linked to each patent. The matching is made only if the similarity score

is higher than 0.025.14 As a result, 27% of patents are matched with at least one

capital good. Table 1 shows the summary statistics of patents for each capital good.

Example 1 shows an example of sample paragraphs of matched patents and capital

goods. Blue words are the common bigrams in both texts.

the reduced form. The qualitative results are robust for reduced-form exercises. See Appendix A.5
for more discussion.

14It is the same as Argente et al. (2020). The reduced form exercises are conducted with various
thresholds, but the result roughly stays the same.
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Table 1: The Number of Patent Matched to Each Capital Good

Mean Sd Median 1Q. 3Q. N. Matching rate (%)

Patent (1970s) 39.53 94.94 7.92 2.00 30.65 1,802 23.83%
Patent (1980s) 81.93 190.84 17.18 4.23 66.00 1,802 23.87%
Patent (1990s) 152.86 410.81 30.70 8.67 115.23 1,802 23.49%
Patent (2000s) 264.11 806.38 43.90 13.67 175.75 1,802 23.00%

Notes: Matching rate is the number of matched patent divided by the number of total
patents in a given period.

EXAMPLE 1

Patent: System and method for de-

tecting deterioration of oxygen sen-

sor

feedback type air-fuel ratio control

system control air-fuel ratio air-fuel

mixture fed internal combustion en-

gine accordance information signal

issued first oxygen sensor installed

exhaust line engine exhaust line cat-

alytic converter position downstream

first oxygen sensor provided system

control system detects deterioration

first oxygen sensor

Wikipedia: Oxygen sensor

oxygen sensor lambda sensor lambda

refers air-fuel equivalence ratio usu-

ally denoted electronic device mea-

sure proportion oxygen gas liquid

analysed common application mea-

sure exhaust gas concentration oxy-

gen internal combustion engine au-

tomobile vehicle order calculate re-

quired dynamically adjust air-fuel ra-

tio catalytic converter work optimally.

Next, the measure of innovation of capital goods is aggregated at the occupation

level. Note that one occupation uses multiple capital goods. The average number

of patents is first calculated for each occupation and capital group in the fixed asset

series by BEA. The number of patents are summed within the occupation for task-

substituting and task-complementing and divide by the number of capital goods

that have Wikipedia articles in each category because not all capital goods have
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Table 2: Example of Patent Counts at the Occupation Level

Occupation Capital Goods Type Patents
Engine Mechanics Pressure Indicator substituting 15
Engine Mechanics Engine test stand substituting 10
Engine Mechanics Screwdriver complementing 10
Engine Mechanics Wire cutter complementing 5

Wikipedia articles. Table 2 shows an example where engine mechanics have the

innovation on task-substituting capital goods equal to (15+10)/2 = 12.25, and the

innovation on task-complementing capital goods equal to (10+5)/2 = 7.5.

Figures 3 and 4 show the scatter plots between CEI measures and abstract task

scores of each occupation. The CEI measures at the occupation level are calculated

across different industries weighted by the 1980 employment share across indus-

tries. The size of the circle corresponds to the aggregate employment in 1980. Note

that the occupation with no task-substituting capital does not appear in the scatter

plot for CEI-s. Both CEI-c and CEI-s measures, the numbers of patents per task-

complementing and task-substituting capital good variety respectively, are biased

towards occupations with higher abstract task scores.
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Figure 3: Abstract Task Score and CEI-c

Slope: 0.085

0
2

4
6

8
10

C
ha

ng
e 

in
 lo

g 
pa

te
nt

 p
er

 c
ap

ita
l (

19
80

-2
01

5)

0 2 4 6 8 10
Abstract Task Score

Task-complementing Task-substituting

Notes: Each circle corresponds to an occupation code in OCC1990, and the size of a
circle corresponds to employment size of each occupation in the 1980 Decennial Census.
Task scores are from Autor and Dorn (2013).

Figure 4: Abstract Task Score and CEI-s
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Notes: Each circle corresponds to an occupation code in OCC1990, and the size of a
circle corresponds to employment size of each occupation in the 1980 Decennial Census.
Task scores are from Autor and Dorn (2013).

25



Figure 5: Routine Task Score and CEI-c
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Notes: Each circle corresponds to an occupation code in OCC1990, and the size of a
circle corresponds to the employment of each occupation in the 1980 Decennial Census.
Task scores are from Autor and Dorn (2013).

For the biasedness of CEI around routine task scores, see Figures 5 and 6. The

CEI of task-complementing capital is smaller for routine occupations. However,

the CEI of task-substituting capital is overall unbiased over routine task scores. If

CEI-c and CEI-s have opposite effects on occupational labor demand, the bias of

CEI-c across routine task scores determines the biased changes in occupational labor

demand. To summarize, innovations in 1980-2015 are more directed towards capital

goods used by abstract and nonroutine occupations. But the bias of innovation is

stronger for task-complementing capital.
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Figure 6: Routine Task Score and CEI-s
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Notes: Each circle corresponds to an occupation code in OCC1990, and the size of a
circle corresponds to the employment of each occupation in the 1980 Decennial Census.
Task scores are from Autor and Dorn (2013).

Occupations with high abstract task scores are less likely to have task-substituting

capital. Figure 7 shows the fraction of workers with zero task-substituting capital in

1980. About 57% of workers in the last quartile of abstract task scores do not have

any task-substituting capital, while this share is only about 19 % for the first quar-

tile. As for routine task scores, more routine occupations are more likely to have at

least one task-substituting capital good.

See Appendix A.3 for more properties of imputed capital stocks and their in-

tensity across task groups and over time. Appendix A.3 shows that more rou-

tine and abstract occupations had a larger increase in capital stock per worker.

Moreover, abstract occupations experienced a disproportionately large increase in

task-complementing capital stocks, while routine occupations experienced more

balanced increases between task-complementing and task-substituting capital stocks.
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Figure 7: Share of Occupations with Zero Task-Substituting Capital across Task
Group
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3.4 Instrumental Variables

3.4.1 Academic Paper Shock

A simple OLS regression of labor market variables on innovation yields a bi-

ased estimate if technical changes are directed by labor demand shocks (Acemoglu,

2002). For example, when there is another demand shock for IT sector workers, the

value of innovation in the IT sector will increase, which leads to the increase in the

innovation incentive on capital goods in the IT sector, such as a computer. Then,

the CEI measure can be correlated with this unobserved demand shock which is

correlated with wage and employment growth rates.

Innovation activities can also be affected by labor supply shocks. More labor

supplies in an occupation can imply that the return to capital innovation becomes

smaller with substitution towards cheaper labor inputs. For example, if immigrants
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are more likely to work in consumer service sectors and more immigrants arrive,

firms in consumer service sectors are less incentivized to invest in labor-saving cap-

ital technology. In this case, the coefficient of CEI measures on employment can be

underestimated. Whether the OLS overestimates or underestimates the true coeffi-

cient is an empirical question.

To avoid this problem, academic publication shocks are used as instruments for

patents. Inventors use knowledge from academic publications when they innovate

and apply for a patent. For example, innovation in the computer sector builds on

the knowledge produced in the electronic engineering field. Therefore, the increase

in the number of papers in electronic engineering is positively correlated with inno-

vation in the computer sector but not necessarily with demand shocks for IT work-

ers.

To measure the knowledge diffusion from academic publications to patents,

data on citations made by patents to academic publications are used following the

innovation literature (Jaffe et al., 1993; Arora et al., 2021). Specifically, if a patent

cites an academic paper, this is interpreted as the patent receiving knowledge dif-

fusion from the academic paper. Thus, the upstream academic publications affect

innovation activities in downstream patent fields.

Marx and Fuegi (2020) provide citation data from patents to academic papers in

Microsoft Academic Graph (MAG hereafter, Sinha et al. (2015)), and 27% of USPTO

patents cite academic papers. Data on academic papers come from the Web of Sci-

ence Field, which has 251 different classifications. For patents, IPC 3-digit is used,

which has 387 classes. The number of citations from each patent class to science

fields are divided by the total number of citations to science as below:

αnm =
cnm∑
m cnm

, (21)

where cnm is the number of citations from patent class n to academic field m. αnm
indicates the degree of dependence of class n on field m.
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Figure 8: Share of Citation from Patent Technology Classes to Academic Fields
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Notes: The graph shows αnm, which is the share of citations from patent technology
classes n to academic fields m. The graph also plots IPC 3-digit patent technology
classes on the X-axis and plot Web of Science academic publication fields on the Y-axis.
The graph only contains the IPC classes that have more than 50,000 citations to science
in the entire period. The share of citations are calculated as the number of citations from
the patent class to the academic field divided by the sum of all citations from the patent
class to all papers in science. When the color gets closer to blue, it has a higher citation
share.

Different patent classes have different shares of citations to different academic

fields. For instance, there have been 42,938 citations from patents in electric power

to papers in engineering, which accounts for 81% of the total citations made by

electric power patents. Figure 8 plots αnm within a selected sample. Engineering

and chemistry are the fields that receive the most citations from patents.

Next, the upstream measure for each technology class are calculated and aggre-
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Figure 9: Growth Rate of Publications over Academic Fields
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Notes: The graph shows growth rates of publications between 1980–2015 over different
Web of Science fields. The graph includes only fields that have more than 1,000 citations
from patents. Publication data comes from MAG and includes publications associated
only with European institutions.

gated into the occupation level as below:

Upstreamjio = ∆ log

(∑
n

snio
∑
m

αnmPm

)
, (22)

where Pm is the number of publications in field m, and snio is the stock-adjusted

share of patent class n in capital goods used for occupation o and industry i for cap-

ital type j = C, S. The instrument variable takes difference-in-logs at the occupation

by industry level. Upstream shocks are calculated separately for CEI-s and CEI-c.

For the growth rate of publications, papers associated only with European in-

stitutions are collected across different fields in MAG to calculate the growth rate
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Figure 10: CEI-c and Publication Instrument
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Notes: Each circle corresponds to an occupation code in OCC1990, and the size of a
circle corresponds to the employment of each occupation in the 1980 Decennial Census.
Task scores are from Autor and Dorn (2013).

between 1970 and 2015. Only papers from European institutions are included be-

cause firms finance academic projects and increase academic publications in some

fields. Figure 9 shows the distribution of the growth rate of publications15. The top

five fields in terms of growth rate are artificial intelligence, information systems,

hardware, software engineering, and control systems.

Figures 10 and 11 show scatter plots between CEI measures and the resulting

academic publication instruments at the occupation level. The publication instru-

ments are strongly positively associated with the actual CEI measures.

3.4.2 Immigration Shock

In order to identify the elasticity of substitution in the production function sep-

arate from the effects of CEI measures, a separate supply shifter is needed. An

independent supply shifter is calculated using trends in Latin American immigra-

15The average is 2.84, the median is 2.74, and the standard deviation is 0.60.
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Figure 11: CEI-s and Publication Instrument
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Notes: Each circle corresponds to an occupation code in OCC1990, and the size of a
circle corresponds to the employment of each occupation in the 1980 Decennial Census.
Task scores are from Autor and Dorn (2013).

tion and heterogeneous exposures to Latin American Immigration. The number of

workers born in Latin America grew by more than 8 times, from 1.4 million to 12

million, between 1980 and 2015, compared to the number of workers born in the

U.S. which grew only by slightly more than twice from 61.8 million to 125 million

in the same period. As a result, the share of workers born in Latin America in total

US employment increased from 2.3 percent in 1980 to almost 10 percent in 2015 in

Figure 12.

The immigrants from Latin America are likely to have comparative advantages

different from workers born in the U.S. Thus, their occupation choice is different

from the occupation choice of workers born elsewhere. Figure 13 shows the his-

togram of the share of workers from Latin America in 1980 across different occupa-

tions. Each occupation is weighted by their employment in 1980. The share of work-

ers from Latin America varies across occupations. For example, in 1980, 13.5 percent

of farm workers are from Latin America while less than 0.2 percent of speech ther-

apists are born in Latin America. Then, a surge in immigration from Latin America
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Figure 12: Share of Workers Born in Latin America over Time
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Notes: This figure plots the share of workers in the U.S. who were born in Latin America
over years.

would have a disproportionately large impact on the labor supply of farm work-

ers.

The heterogeneous exposure to immigration shock is computed based on the

share of workers from Latin America in 1980. Specifically, let lc,1980o denote the num-

ber of workers from Latin American country c in 1980 at occupation o and l1980o de-

note the total number of workers in 1980 at occupation o. Then, the total number of

workers born in Latin American country c in the labor market is Lc,1980 =
∑

o l
c,1980
o .

Likewise, the number of workers in 1980 is denoted by lc,2015o and Lc,2015. Then, the

Bartik immigration shock is defined as in the following equation.

zo =
∑
c

lc,1980o

l1980c

log

(
Lc,2015 − lc,2015o

Lc,1980 − lc,1980o

)
. (23)

Workers in occupation o are subtracted out from calculating the supply shock to rule

out the effect of occupation-level shocks associated with more immigration from

country group c.
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Figure 13: Histogram of Share of Workers Born in Latin America in 1980
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Notes: The graph shows the share of workers born in Latin America in 1980 at the occu-
pation level and draw the histogram of the observations. Each occupation is weighted
by the numbers of workers in 1980.

3.5 Estimation Strategy

Due to the nested CES structure, parameters are sequentially estimated with

the Generalized Method of Moments (GMM) using first order conditions. First, the

elasticity of substitution for the inner CES composite is estimated from Equation (9).

Then, the elasticity of substitution for the outer CES composite between the inner

composite and task-complementing capital is estimated from Equation (10). Lastly,

the elasticity of substitution across different occupational inputs is estimated using

Equation (16). The elasticity of occupation labor can be estimated separately.

Variables are differenced between 1980 and 2015 to estimate the model parame-

ters. In the context of measuring capital productivity changes with the text-matching
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procedure, log-differencing removes time-invariant measurement errors associated

with text-matching errors. For example, if the Wikipedia articles about lasers are

easier to be matched than the Wikipedia articles for computers and the errors are

multiplicatively separable and constant over time, log-differencing the number of

patents cancels out the matching errors.

First, Combining Equation (4) and (9), we can get the following equation:

∆ log

(
ωsio
wo

)
= γs∆ logPsio −

1

ρs
∆ log

(
ksio
lio

)
. (24)

In this equation, γs := γ1s + ρs−1

ρs
γ2s and ωsio := ωsio1ω

ρs−1
ρs

sio2 . We further assume that

∆ logωsio can be expressed as follows:

∆ logωsio = αsXo + φsi + εsio , (25)

where φsi is the industry-specific productivity shock for task-substituting capital.

Xo includes the offshorability index and the task scores at the occupation level. It

is also assumed that, for selected instrumental variables Zsio, E(Zsioεsio). Then, the

GMM objective function is given by

(ρ̂s, γ̂s) (26)

= argmin
ρs,γs

∑
o

k1980io

(
∆ log

(
1

wo

)
+

1

ρs
∆ log

(
ksio
lio

)
− γs∆ logPsio − αsXo − φsi

)
Zsio ,

where k1980io = k1980sio +k1980cio is the total value of capital used by occupation o in indus-

try i in 198016. The set of instrumental variables include the immigration shock, the

academic publication shock for task-substituting capital, and Xo. The parameters

in this objectives are just identified with the number of GMM restrictions equal to

the number of parameters. The identification assumption for γs is that, after con-

16Initial capital value measured in 2012 dollar at the occupation× industry level, as opposed to ini-
tial employment, as weights for the GMM condition. This is to give more weight to capital-intensive
occupation × industry observations for .
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trolling for the offshorability and the task scores, the non-US publication shock is

orthogonal to productivity and depreciation shocks.

In the first order condition, a decrease in user costs of capital, rsio, is isomor-

phic to an increase in the productivity of capital, z
ρs−1
ρs

sio . Thus, the effect of CEI-s

on Equation refeq: focs through reductions in user costs of capital is not separately

identified from the effect of CEI-s through improvements of productivity for capital.

Thus, Equation (4) is estimated with the imputed user costs of capital to estimate γ1s .

Then, the estimate of γ2s is calculated from the estimate of γs. The residuals give

ẑsio, estimates for zsio. Then, Θ̂io is computed with the parameter estimates, ẑsio, and

observed input price ratios.

Parameters in Equation (13) are also estimated with the GMM. We combine

Equation (4) and (13) to get the following equation:

∆ log

(
ωcio
wo

)
=
ρs − ρc
ρsρc

∆ log Θio + γc∆ logPcio −
1

ρc
∆ log

(
kcio
lio

)
. (27)

In this equation, γc := γ1c + ρc−1

ρc
γ2c and ωcio := ωcio1ω

ρc−1
ρc

cio2 . ωcio is assumed to have the

following parametric form.

∆ logωcio = αcXo + φci + 1o∈G−sκci + εcio , (28)

where the indicator 1o∈G−s takes value one if the occupation does not have any task-

substituting capital. In this case, the marginal product of labor for the inner com-

posite, Θio, becomes automatically one. κci addresses the mean difference between

occupations with and without task-substituting capital within each industry. The

estimation assumes orthogonality condition E(Zcioεcio) = 0. Then, the GMM estima-

tor is defined as

(ρ̂c, γ̂c) = argmin
ρc,γc

∑
o

k1980io

(
∆ log

(
1

wo

)
+

1

ρc
∆ log

(
kcio
lio

)
(29)

− ρs − ρc
ρsρc

∆Θio − γc∆ logPcio − αcXo − φci − 1o∈G−sκci

)
Zcio.
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Again, the parameter estimate are used to calculate estimates for zcio. ỹio can be

formulated from the estimates and the observables. The instrumental variables for

this estimation include the immigration shock, the academic publication shock for

task-complementing capital, andXo. As in the case of task-substituting capital, only

γc = γ1c + ρc−1

ρc
γ2c are identified. The estimate for γ1c is used from the instrumented

regression of capital cost on the task-complementing CEI measure to separate the

estimate of γ2c .

Lastly, Equation (16) is used to estimate the across-occupation elasticity σ. The

demand shock for occupational tasks µio is assumed to take the following form.

∆ log µio = α̃Xo + ψi + 1o∈G−sκ̃i + γ3s∆ logPsio + γ3c∆ logPcio + εio. (30)

The estimation uses the orthogonality condition that E(Z l
ioεio) = 0. Then, the GMM

objective can be expressed as:

(σ̂, γ̂3s , γ̂
3
c ) = argmin

σ,γ3s ,γ
3
c

∑
o

l1980io

(
∆ logwo +

1

σ
∆ log lio −

ρc − ρs
ρcρs

∆ log Θio (31)

−
(

1

ρc
− 1

σ

)
∆ log ỹio − α̃Xo − ψ̃i − 1o∈G−sκ̃i − γ3s∆ logPsio − γ3c∆ logPcio

)
Z l
io ,

where ψ̃i is the industry-specific productivity shocks for task composites (ψ) plus

industry-level normalizing factor. The normalization is needed because Equation

(16) identifies the amount of labor input relative to a baseline occupation in the

industry. This equation also takes the mean difference of ∆ log µio between occu-

pations with and without without task-substituting capital within industries. The

instrumental variables Z l
io include the immigration shock, publication instruments,

and Xo.

The elasticity of supply is calibrated at 2.5, average of the labor supply elasticity

in the 1980s and the 2000s from Grigsby (2022)17. Grigsby (2022) accounts for het-

erogeneous skills and productivity across different demographic groups to estimate

17In the 1980s and the 2000s, the elasticity of labor supply is 1.67 and 3.44, respectively.
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Table 3: Parameter Estimates - First Order Conditions

ρs γs ρc γc σ

Estimate 10.040 0.047 5.682 -0.031 9.136

N 6675 - 11455 - 11455
Note: ρs (ρc) is the elasticity of substitution between task-substituting
(task-complementing) capital and labor. σ is the elasticity of substitu-
tion between occupational inputs. γs (γc) is the coefficient of CEI-s (-c)
on capital-labor substitution equation.

elasticity of labor supply. Unlike Grigsby (2022) who covers yearly adjustments for

occupation choice, the estimation in this section with differenced variables deals

with changes in occupation choice over 35 years. Thus, the calibrated elasticity of

2.5 is likely to be a lower bound, and the counterfactual exercise below is likely to

understate the effect of demand-side changes.

3.6 Estimation Results

Tables 3 and 4 show the estimation results. In Table 3, the estimate for ρs is

larger than the estimate for σ, which is larger than ρc. As discussed in Section 2.3,

these values imply that the scale effect is smaller than the substitution effect for

task-substituting capital, but the reverse is true for task-complementing capital. As

a result, an increase in productivity or a decrease in the price of task-substituting

capital reduces relative labor demand. On the other hand, an increase in produc-

tivity or a decrease in the price of task-complementing capital raises relative labor

demand. Estimates of elasticities are overall higher than the estimates in Caunedo

et al. (2021) because this paper covers labor market adjustments over 35 years.

Because user costs of capital and relative productivity of capital both enter Equa-

tions (9) and (10), only a linear combination of γ1j and γ2j (j = s, c) is identified in

the GMM estimation using first order conditions. γs = γ1s + ρs−1
ρs
γ2s is positive while

γc = γ1c + ρc−1
ρc
γ2c is negative. The negative estimate for γs implies that production

of occupational inputs becomes more capital-intensive with CEI-s, and the opposite
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Table 4: Parameter Estimates - Effects of CEI

γ1s γ2s γ3s γ1c γ2c γ3c

Estimate 0.302 -0.283 -0.036 -0.139 2.867 0.025

N 6655 - - 11455 - -
Note: γ1s (γ1c ) is the coefficient of CEI-s (CEI-c) on user costs of capital.
γ2s (γ2c ) is the coef. of CEI-s (CEI-c) on relative productivity of capital.
γ3s (γ3c ) is the coefficient of CEI-s (CEI-c) on demand shifter for occupa-
tional inputs.

holds for CEI-c.

Table 4 presents the estimation results for the coefficient of CEI measures on

capital user costs, capital productivity, and the residual demand for occupational

task input. γ1j (j = s, c), the effect of CEI on user cost of capital, can be estimated

from a separate estimation between CEI measure and user costs of capital using

publication instruments. Then, γ2j (j = s, c) is recovered from γj = γ1j +
ρj−1
ρj
γ2j

(j = s, c).

The estimate for γ1s is significantly positive while γ1c is estimated negative. Both

CEI-s and CEI-c reduce the quality-adjusted price of capital, which lowers user costs

of capital. However, both types of CEI also increase depreciation rates of existing

capital stocks, raising user costs. The price effect dominates for task-substituting

capital whereas the depreciation rate effect dominates for task-complementing cap-

ital. This is why labor intensity increases with CEI-c relative to task-complementing

capital in the estimation of Equation (10), captured by negative γc.

The estimate for γ2c is negative, but the estimate for γ2c is positive. γ2s and γ2c

govern how CEI-s and CEI-c affect productivity of capital in the capital-labor sub-

stitution equations, after taking their effect on user costs into account. Thus, CEI-s

reduces the productivity of task-substituting capital relative to labor inputs whereas

CEI-c raises the productivity of task-complementing capital. This positive effect of

CEI-c cancels out the negative effect of CEI-c on the user cost of task-complementing

capital.
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Nonetheless, γ1s + γ2s and γ1c + γ2c are both positive. As a result, in Equation (16),

the marginal product of labor for the inner composite, Θio, increases with CEI-s, and

the marginal product of labor for the occupational task input, ỹio, increases with

CEI-c. Combining these results with the condition, ρ̂s > σ̂ > ρ̂c, implies that CEI-

s (CEI-c) reduces (raises) relative labor demand. These results are consistent with

reduced-form findings in Appendix A.4.

4 Counterfactuals

The counterfactual exercise aims to address the following question: what hap-

pens to the labor market and its summary statistics without CEI? To address this

question, a counterfactual equilibrium is calculated with the CEI measures fixed at

the level of 1980. Other demand and supply shocks stay at their levels of 2015. Us-

ing the counterfactual labor market outcomes, the statistics that summarize changes

in the labor market are calculated and compared to the actual counterparts.

To see what task-biased labor market changes would look like without CEI be-

tween 1980 and 2015, the auxiliary linear regression in the introduction is used to

measure the task bias of labor market changes. The estimate for the coefficient of

task score on labor market changes summarizes how biased changes in the labor

market were over abstract and routine task scores. Specifically, the changes in em-

ployment and wage between 1980 and 2015 are regressed on task scores.

Table 5 shows the task bias results after running the regression equation of em-

ployment and wage changes in logs on task scores at the occupation level. Notice

that the task scores are normalized to have a unit standard deviation. In this period,

if an occupation has one standard deviation higher score of abstract tasks, the occu-

pation has 12 and 9 percentage points higher employment and wage growth rates,

respectively. Without CEI more biased towards abstract occupations, however, this

task bias is attenuated. Without the effect of CEI, one standard deviation higher ab-

stract task score predicts about 5 and 6 percentage points higher employment and

wage growth rates. Put differently, CEI makes 61% and 31% of abstract-task bias
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Table 5: Counterfactual - Task-Biasedness

Abstract Score Routine Score
Employment Wage Employment Wage

Without CEI 0.047 0.064 -0.114 -0.041
Actual Change 0.120 0.093 -0.166 -0.062

Notes: the table shows coefficient estimates of task scores on employment
and wage growth between 1980 and 2015 from a univariate OLS regression
at the occupation level. Industry×occupation-level counterfactual employ-
ment is aggregated to occupation level. Task scores are normalized to have
a unit standard deviation. Each observation is weighted by its employment
in 1980.

in employment and wage growth rates, respectively. CEI also contributed to the

routine-biased labor market changes. CEI contributes to about 31% (33%) of em-

ployment (wage) growth biased against routine occupations.

Lastly, the effect of CEI on job polarization between 1980 and 2015 is shown

in Figure 14. The curve depicts a fractional polynomial prediction of employment

change between 1980 and 2015 against the log weekly wage in 1980. As in Autor

and Dorn (2013), employment growth at the occupation level takes a U-shape form

over the log wage level in 1980. In relative terms, the importance of middle-wage

occupations becomes smaller than that of high- and low-wage occupations. The

counterfactual equilibrium without CEI features a smaller increase in employment

for the high-wage and low-wage occupations. Both CEI-c and CEI-s are lower for

middle-wage occupations. However, because the effect of CEI-c dominates, the em-

ployment growth is smaller for middle-wage occupations.

5 Conclusion

This paper develops a measure of capital-embodied innovations (CEI) from patent

data, using a text-based matching algorithm between patent descriptions and Wikipedia

articles of capital goods. Occupation-level differences in the use of capital goods
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Figure 14: Counterfactual - Jop Polarization
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Notes: This graph shows the fitted line of log employment change between 1980 and
2015 across the average wage in 1980 at the occupation level. The observations are fitted
with a quadratic fractional polynomial weighted by their employment in 1980.

give useful cross-sectional variations to identify the impact of CEI on labor market

outcomes. This is a novel way of using patent data to measure technological changes

from the adopters’ perspectives as opposed to the innovators’ perspectives.

This paper also makes an important distinction between capital goods that sub-

stitute labor inputs and capital goods that complement labor inputs in making oc-

cupational services. If the function of capital goods is similar to the tasks of occu-

pation, the CEI on these capital goods spurs substitution towards capital goods and

lowers relative labor demand for the occupation. On the other hand, if the function

of capital goods is different from the tasks but still performing the task requires the

capital goods, the CEI on the capital goods increases the relative labor demand for

the occupation. This distinction implies that the effect of CEI on the labor market

outcomes depends heavily on the direction of CEI.
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With the CEI measure from patents, technological factors can be isolated from

others, such as trade and outsourcing, for the labor market changes. Innovations

have shaped biased trends of labor market demand, which implies that innovation

policies can generate biased labor market trends. As long as these policies affect

innovations on various capital goods in a different magnitude, innovation policies

have heterogeneous consequences across occupations. Then, a supplementary pol-

icy design is needed to reduce structural unemployment and lower labor market

inequality. The results in this paper call for continuing research on the long-run

responses of the labor market to innovation policies through CEI.
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A Appendix

A.1 Model Derivation

Derivation of Equation (14)

ỹio :=

z ρc−1
ρc

cio k
ρc−1
ρc

cio +

(
z
ρs−1
ρs

sio k
ρs−1
ρs

sio + l
ρs−1
ρs

io

) ρs
ρs−1

ρc−1
ρc


ρc
ρc−1

/lio

=

z ρc−1
ρc

cio

(
kcio
lio

) ρc−1
ρc

+
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ρs

sio

(
kcio
lio

) ρs−1
ρs

+ 1
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ρc−1
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ρc
ρc−1

From Equation (13), z
ρc−1
ρc

cio

(
kcio
lio

) ρc−1
ρc

= Θ
(ρs−ρc)(ρc−1)

ρsρc
io zρc−1c

(
rcio
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From Equation (11),

z ρs−1
ρs

sio

(
kcio
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) ρs−1
ρs
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
ρs
ρs−1

= Θio,
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(
Θ

(ρs−ρc)(ρc−1)
ρsρc

io zρc−1c

(
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From Equation (4), rcio = P
−γ1c
cio · ωcio1, zcio = P

γ2c
cio/ωcio2 ,

= Θ
ρs−ρc
ρs

io

(
P
γ̃c(ρc−1)
cio

(
ω̃cio
wo

)1−ρc
+ Θ

ρc−1
ρs

io

) ρc
ρc−1

. (32)

Derivation of Equation (15) A representative firm maximize the industrial out-

puts by choosing labor and capital. When we take the first order condition with
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respect to lio, we get the following equation:

wo = µioy
− 1
σ
+ 1
ρc

io

(
z
ρs−1
ρs

sio k
ρs−1
ρs

sio + l
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(ρs−1)ρc

l
− 1
ρs
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From Equation (11),
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. (33)

A.2 Imputation of Capital Stock and User Cost of Capital

Occupation-specific capital stock are imputed using procedures similar to to

Caunedo et al. (2021). Each occupation has a set of capital goods in UNSPSC codes.

These UNSPSC codes are converted to the NIPA capital types using the crosswalk

table in Aum (2017). The 2012 fixed-price capital stock series is used to measure

the quantity of capital bundles normalized in 2012. For the price of capital bun-

dle, the price deflator is calculated between current-cost and fixed-cost capital stock

from the BEA. Depreciation rates are computed from depreciated capital stock data

from the BEA. Specifically, the depreciation rate is the ratio of depreciated capital

stock in a year to the simple average between the capital stock evaluated at the end

of the year and the capital stock evaluated at the end of the previous year. Lastly,

current-cost shares are used to calculate the cost-weighted average of depreciation

rates.

The capital intensity of an occupation o for the NIPA capital type n is first de-

fined by the number of UNSPSC codes in the “Tools used” dataset that are mapped

into n. Let #Capitaln,so (#Capitaln,co ) denote the number of task-substituting (task-

complementing) capital goods and Kn
i the capital expenditure (based on the fixed

price in 2012 USD) of industry i on capital type n. Then, the capital stock of occupa-
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tion o, industry i, capital good n is imputed as

xsion =
lio#Capital

n,s
o∑

p lip#Capital
n,s
p +

∑
p lip#Capital

n,c
p
Kn
i (34)

xcion =
lio#Capital

n,c
o∑

p lip#Capital
n,s
p +

∑
p lip#Capital

n,c
p
Kn
i

Thus, capital stocks are prorated across occupations with intensity-weighted num-

ber of workers. The final capital stock is given as the sum across all capital types.

ksio =
∑
n

xsion (35)

kcio =
∑
n

xcion

The user cost for the capital bundle is computed as follows.

rsion = r +
∑
n

qsionxsion
Qsioksio

δin (36)

rcion = r +
∑
n

qcionxcion
Qciokcio

δin

where r is the real interest rate and δin is the depreciation rate of capital good type.

δin is imputed as the ratio between current-cost depreciated capital stock in a year

to the average current-cost capital between the year and the year forward. qsion is

the price deflator between the current-cost stock of capital and the fixed-cost stock

of capital measured in 2012 prices. Qsio is defined by the non-arbitrage condition∑
n qjionκjion = QjioZ where the factor-neutral conversion rate Z is normalized to

one. r is set at 3% in a year.

A.3 Capital Stock per Worker over Time and Task Scores

This appendix shows the properties of imputed capital stock over time and in

relation to the task scores of occupations.
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Figure 15 shows the average fixed-cost capital stock in 2012 prices per worker

and the share of task-substituting capital over time. An average U.S. worker be-

comes more intensive in capital evaluated in 2012 prices, over time. An average

worker in 1970 is working with capital equivalent to 1,500 US dollars while an av-

erage worker in 2015 works with capital equivalent to 4,700 US dollars. The share

of task-substituting capital is slowly decreasing, not increasing, over time. Task-

substituting capital accounts for 16% of total capital in 1970 but accounts for 12% of

total capital in 2015. This is consistent with the fact that the labor market in the U.S.

shifts more towards occupations that are less substitutable with capital.

Figure 15: Capital per Worker over Time
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.

Next, Figures 16 and 17 show the average capital per worker in 1980 and 2015

over abstract and routine task score quartile groups. Less abstract and more rou-

tine occupations are more capital-intensive. However, the increment in capital stock

per worker is more pronounced for more abstract and more routine task occupa-
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tions. Later, it is shown that the increment in the capital stock of more abstract

task occupations is more tilted toward task-complementing occupations while the

increment of routine occupations is more balanced between task-substituting and

task-complementing capital.

Figure 16: Capital per worker across abstract task score quartile
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.
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Figure 17: Capital per worker across routine task score quartile
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.

Figures 18 and 19 show the changes in task-substituting capital per worker.

Again, less abstract occupations are more intensive in task-substituting capitals.

However, the increase in task-substituting capital is now much dampened and less

biased towards less abstract occupations. If occupations are categorized around

routine task scores, on the other hand, the intensity in task-substituting capital in-

creases only among the third and the third quartile of the routine scores. Thus, a

uniform increase in CEI-s would have a disproportionately large effect on routine

occupations.
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Figure 18: Task-Substituting Capital per Worker across Abstract Task Score Quartile
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.

Figure 19: Task-Substituting Capital per Worker across Routine Task Score Quartile
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.

Figures 20 and 21 display the task-complementing capital stocks across abstract
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and routine task score quartiles, respectively. In 1980, more abstract task occupa-

tions were less intensive in task-complementing capital, but in 2015 their capital

intensity is much more similar to less abstract occupations than before. In other

words, the growth of task-complementing capital is more pronounced for more ab-

stract task occupations. In Figure 20, the third and the fourth quartile of the abstract

task scores had a little or negative increase in task-substituting capital. Thus, the

increase in overall capital intensity for the third and the fourth quartile groups in

Figure 16 entirely results from an increase in task-complementing capital stock. For

more routine occupations, however, the increase in capital stock happens for both

task-complementing and task-substituting capital. In Figure 21, the third and the

fourth quartile groups of routine task scores experience a large increase in the task-

complementing capital stock per worker as well as the increase in task-substituting

capital in Figure 19.

Figure 20: Task-Complementing Capital per Worker across Abstract Task Score
quartile
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.
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Figure 21: Task-Complementing Capital per Worker across Routine Task Score
Quartile
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Notes: Quartile groups are made with the task scores from Autor and Dorn (2013) at
the occupation level. Each occupation is weighted by the number of workers in 1980.

A.4 Reduced-Form Results

This appendix shows the correlation between employment changes and the CEI

measures at the occupation level. Again, the CEI measures at the occupation level

are calculated across different industries weighted by employment share in 1980.

Occupation-level employment is calculated by aggregating occupation employment

across industries.
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Figure 22: Employment Change and CEI-c
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Figure 23: Employment Change and CEI-s
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Figures 22 and 23 show the scatter plot between log employment change at the

occupation level in 1980-2015 and CEI measures. Both CEI measures are positively

correlated with employment changes, but the coefficient of task-complementing

capital innovation is larger than that of task-substituting capital innovation. An 1

log point increase in patent per task-complementing capital is associated with a 0.2

log point additional increase in employment. On the other hand, the same increase

in patent per task-substituting capital is associated with an 0.1 log point increase in

employment.

Figure 24: Employment Change and Instrument for CEI-c
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Figure 25: Employment Change and Instrument for CEI-s

Inverse Slope: -0.128
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Task scores are from Autor and Dorn (2013).

As pointed out in Section 3.4.1, the OLS estimates for CEI measures can be bi-

ased if occupational task demand shocks and supply shocks affect innovation deci-

sions for capital goods. Running an OLS regression without controlling for the other

types of CEI makes a biased estimate since the two CEI measures as well as the CEI

instruments are positively correlated.

To solve these issues, Figures 24 and 25 show occupation-level scatter plots be-

tween employment changes and academic publication instruments. The instrument

for task-complementing CEI increases with log employment change. On the other

hand, the instrument for task-substituting CEI now decreases with log employment

change. The upward bias of the OLS coefficient relative to the IV one suggests that

the positive shocks to industry-level demand and capital productivity can increase

demand for labor inputs and innovation for capital goods.
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Table 6: Reduced-Form Results: Employment Change

(1) (2) (3) (4) (5)
OLS IV OLS IV OLS

CEI-C 0.154 0.242 0.131 0.237
(0.010) (0.020) (0.010) (0.019)

CEI-S -0.048 -0.114 -0.029 -0.151
(0.010) (0.030) (0.010) (0.032)

Immigration 2.422 2.334 2.060
(0.173) (0.199) (0.186)

Offshorability 0.028 0.047 0.057
(0.009) (0.011) (0.009)

Routine -0.008 -0.001 -0.026
(0.004) (0.004) (0.004)

Abstract 0.094 0.093 0.101
(0.005) (0.005) (0.004)

Manual 0.091 0.090 0.085
(0.009) (0.009) (0.009)

First Stage F - 656.4 - 570.2 -
N 11455 11455 11455 11455 11743

Table 6 summarizes coefficient estimates from the linear regression of employ-

ment changes on CEI measures and covariates. All specifications include indus-

try dummies and industry dummies interacted with an indicator of occupations

without task-substituting capital. Across all specifications, the coefficient of CEI on

task-complementing capital is positive and statistically significant on changes in log

employment. The linearized effect of CEI-c is robust to controlling for immigration

shocks, offshorability index, and task scores at the occupation level. The OLS esti-

mate is smaller than the IV estimates. This is consistent with a story that patenting

incentives are higher with negative labor supply shock, which lowers employment

growth.

For CEI on task-substituting capital, the linearized effect is negative and statis-

tically significant for IVs for employment changes, even after controlling for other

occupation-level characteristics. The OLS estimates are larger than the IV estimates,

implying that patenting incentives are more responsive to demand shocks for occu-
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pational tasks.

Table 7: Reduced-Form Results: Wage

(1) (2) (3) (4) (5)
OLS IV OLS IV OLS

CEI-C 0.002 -0.004 -0.008 0.002
(0.001) (0.002) (0.001) (0.002)

CEI-S -0.014 -0.015 -0.012 -0.026
(0.001) (0.003) (0.001) (0.003)

Immigration -0.242 -0.259 -0.194
(0.019) (0.022) (0.018)

Offshorability -0.013 -0.011 -0.015
(0.001) (0.001) (0.001)

Routine -0.011 -0.010 -0.011
(0.000) (0.000) (0.000)

Abstract 0.007 0.007 0.007
(0.000) (0.001) (0.000)

Manual 0.006 0.005 0.006
(0.001) (0.001) (0.001)

First Stage F - 656.4 - 570.2 -
N 11455 11455 11455 11455 11763

Table 7 shows the linear regression results on the wage instead. The results of

wage changes trace out the results of employment growth with a smaller magni-

tude.

A.5 Different Thresholds

In Section 3.2, the threshold is set at the 95th percentile of the similarity score

distribution for all the pairs between capital goods and occupation. This threshold

successfully gives opposite signs to CEI-s and CEI-c measures in the reduced-form

regression. This appendix shows the reduced-form results in Section A.4 after set-

ting different thresholds for task-substituting capital. Intuitively, if the similarity

increases with substitutability to labor, a lower threshold reduces the average sub-

stitutability of task-substituting capital and increases the reduced-form coefficient
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on employment growth. The 80th, the 90th, the 94th, and the 96th percentile of the

capital-occupation similarity distribution are tested for thresholds and repeat the

reduced-form regression exercise.

Table 8: Employment Change with 80th Percentile Threshold

(1) (2) (3) (4) (5)
OLS IV OLS IV OLS

CEI-C 0.147 0.253 0.171 0.277
(0.010) (0.019) (0.010) (0.017)

CEI-S 0.011 0.444 0.039 0.382
(0.011) (0.022) (0.011) (0.023)

Immigration 3.504 4.574 3.051
(0.156) (0.173) (0.155)

Offshorability 0.011 -0.039 0.033
(0.010) (0.011) (0.010)

Routine 0.018 -0.003 0.001
(0.004) (0.005) (0.004)

Abstract 0.117 0.099 0.130
(0.005) (0.005) (0.005)

Manual 0.119 0.098 0.107
(0.009) (0.010) (0.009)

First Stage F - 2001.7 - 1949.0 -
N 11430 11430 11418 11418 11751
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Table 9: Employment Change with 90th Percentile Threshold

(1) (2) (3) (4) (5)
OLS IV OLS IV OLS

CEI-C 0.130 0.331 0.161 0.318
(0.010) (0.018) (0.010) (0.017)

CEI-S -0.022 -0.025 0.016 -0.019
(0.009) (0.023) (0.009) (0.024)

Immigration 3.403 3.652 3.009
(0.158) (0.178) (0.156)

Offshorability 0.014 0.018 0.034
(0.010) (0.011) (0.010)

Routine 0.013 0.023 0.000
(0.004) (0.004) (0.004)

Abstract 0.119 0.114 0.130
(0.005) (0.005) (0.005)

Manual 0.111 0.115 0.103
(0.009) (0.009) (0.009)

First Stage F - 1068.5 - 929.5 -
N 11440 11440 11428 11428 11751

Table 10: Employment Change with 94th Percentile Threshold

(1) (2) (3) (4) (5)
OLS IV OLS IV OLS

CEI-C 0.142 0.190 0.121 0.200
(0.010) (0.019) (0.010) (0.018)

CEI-S -0.031 -0.008 -0.019 -0.045
(0.009) (0.024) (0.009) (0.025)

Immigration 2.691 2.796 2.543
(0.150) (0.159) (0.149)

Offshorability 0.017 0.022 0.026
(0.009) (0.011) (0.009)

Routine -0.008 -0.004 -0.019
(0.004) (0.004) (0.004)

Abstract 0.096 0.094 0.104
(0.005) (0.005) (0.005)

Manual 0.082 0.083 0.079
(0.009) (0.009) (0.009)

First Stage F - 931.5 - 844.6 -
N 11452 11452 11440 11440 11751
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Table 11: Employment Change with 96th Percentile Threshold

(1) (2) (3) (4) (5)
OLS IV OLS IV OLS

CEI-C 0.156 0.242 0.129 0.238
(0.010) (0.019) (0.010) (0.019)

CEI-S -0.054 -0.131 -0.019 -0.111
(0.010) (0.030) (0.010) (0.032)

Immigration 2.675 2.697 2.473
(0.174) (0.199) (0.173)

Offshorability 0.020 0.029 0.032
(0.009) (0.011) (0.009)

Routine -0.008 -0.005 -0.019
(0.004) (0.004) (0.004)

Abstract 0.094 0.090 0.104
(0.005) (0.005) (0.005)

Manual 0.096 0.094 0.091
(0.009) (0.009) (0.009)

First Stage F - 695.3 - 575.5 -
N 11455 11455 11443 11443 11751

When the threshold is too low at the 80th or the 90th percentile, the CEI mea-

sure on task-substituting capital has a positive coefficient in column (4). Still, the

CEI measure on task-substituting capital has a significantly smaller coefficient than

the CEI measure on task-complementing capital in all cases. The reduced-form co-

efficient of the CEI-s becomes negative at the 94 percentile threshold. After the 95th

percentile, column (4) of each table exhibits significantly negative coefficients of the

CEI-s on employment growth.

A.6 Computers and Robots

Computers and robots have been considered the most important technological

changes in the labor market. This section shows the importance of computers and

robots to generate labor market changes.
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Table 12: Share of Computer and Robot in CEI measures

Mean Sd Median

Computer - complementing 0.25 0.30 0.10
Computer - substituting 0.03 0.15 0.00
Robot - complementing 0.00 0.01 0.00
Robot - substituting 0.01 0.07 0.00

Table 12 shows the share of computers and robots in CEI measures at the oc-

cupation level. A capital good is considered a computer if the commodity title has

the words “computer” or “laptop”. On the other hand, a capital good is considered

a robot if the title has the words “automatic”, “robot”, or “drone”. Computers ac-

count for 25% of task-complementing capital and 3% of substituting capital. Robots

account for less than 0% of task-complementing capital and 1% of task-substituting

capital.

Because robots account for a tiny fraction of capital goods, the counterfactual

exercise is repeated only after excluding computers but not robots. The counterfac-

tual patent measure now fixes the level of innovation for computers at its level in

2015 and changes only residual CEI to the level in 1980.

Table 13: Counterfactual Results Without Computer-Embodied Innovation

Abstract Score Routine Score
Employment Wage Employment Wage

Without CEI 0.057 0.068 -0.116 -0.041
Actual Change 0.120 0.093 -0.166 -0.062

Table 13 exhibits the results. Even without changes in CEI on computers, the

residual changes in CEI results in significant changes in abstract-biased employ-

ment growth. Compared to the results in Table 5, the residual CEI still replicates

86% ((0.12 - 0.057)/(0.12-0.047)) of abstract-biased employment changes. In other

words, computer-related CEI generates 14% of the effect of CEI on abstract-biased

employment growth. This value is lower than the share of computers in capital
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goods because computers are used for almost all occupations. The effect of comput-

ers on task-biased technological change comes from the heterogeneous intensity of

computers in capital bundles. On the other hand, for routine task scores, excluding

CEI on computers has a negligible effect on employment and wage changes. This

results from routine-task input production intensive in machinery.

A.7 Counterfactual Details

The counterfactual exercise aims to derive the counterfactual equilibrium with-

out CEI in 1980-2015. Demand-side variables such as ωsio, ωcio, µio, αi, rsio, and rcio

are fixed at their levels in 2015, change P s
io and P c

io at their levels in 1980. The total

employment L is also fixed at its level in 2015. In order to run the counterfactual

equilibrium, the two following equations are additionally needed.

1 =
αiµio
αjµjo

(
Yi
Yj

) 1
σ
−1(

yio
yjo

) 1
ρc
− 1
σ
(

Θio
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ρsρc
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lio
ljo

)− 1
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(37)

Yi = lio

∑
o
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(
lio
li0

)σ−1
σ

ỹ
σ−1
σ

io

 σ
σ−1

= li0Ỹi (38)

Equation (37) is given by the first order conditions with respect to lio and ljo, respec-

tively. Equation (38) expresses industrial outputs as a linear function of lio, labor

input of a reference occupation 0, and Ỹi that only depends on the ratio of labor in-

puts relative to a reference occupation 0. The manager (OCC1990 = 22) is used as

the reference occupation.

By combining Equations (37) and (38), the following equation is derived.
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