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Abstract

This paper measures innovation on tools used by different occupations and studies

its impact on the increasing skill premium. First, we match the description of tools

from Wikipedia with patent text data using textual analysis to measure the innovation

on tools. Then, we study its relation with the labor market variables at the occupation

level. We find 1) innovation on tools grew more in skill-intensive occupations. 2) it

is positively associated with wage and employment growth across occupations. 3) it

is positively correlated with the skill premium and skill intensity growth within each

occupation. Motivated by this reduced-form evidence, we build a model where tool

innovation increases the demand of occupations, potentially more for skilled workers.

Parameters are estimated through the Generalized Method of Moments. We find that

tool innovation accounts for 61% of the total demand factor that contributed to the

skill premium increase in 1980-2015.
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1 Introduction

Economic growth has been associated with uneven benefits to workers. Skill premium,

defined by the mean wage difference between skilled and unskilled labor, has grown

steadily over time. At the same time, the fraction of blue-collar workers has decreased

while the shares of service and office workers have increased substantially since the

1980s. Such worker heterogeneities have been studied to evaluate the need for policy

intervention such as worker retraining programs or income reallocation schemes.

Meanwhile, economists have considered technological changes in the demand side of

the labor market as the driver of the uneven incidences of economic growth (See, for

example, Hornstein et al. (2005)). This is because, in almost all cases, the skill group

of workers that is favored by the wage growth also experienced employment growth.

Figure 1 shows that there have been increases in skill premium as well as in the share

of college-educated workers since 1980. Moreover, rapid improvements of capital goods

and modernization of the production process have affected the labor market during the

same period. Most views hypothesize that the complementarity of new technologies is

heterogeneous across worker groups depending on their education level or occupations

(e.g., Nelson and Phelps (1966), Krusell et al. (2000), Autor et al. (2003)). However,

the lack of measures for technical change over the heterogeneous workers makes it

difficult to find direct evidence of the hypothesis.

This paper constructs a direct measure of technical change on tools used by different

occupations and studies its effect on the increase in the skill premium. We use the

list of tools used in each occupation constructed in O*NET. These tools are expected

to be complementary to labor, but the complementarity is confirmed by data. Then,

we measure the technical change on each tool using patent data. Since patents are

not naturally connected with tools or any other commodity codes, we use textual
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Figure 1: College premium and share of college graduates
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analysis to match patents to tools. To be specific, we match the most relevant tools

for each patent by calculating the similarity between the abstract of patents and the

Wikipedia page of the tools. Patents that are matched to each tool are used as the

measure of innovation on the tool. The measure is then aggregated at the occupation

level and connected to the labor market variables such as wage, employment, and skill

premium.

Our tool innovation measure has two strengths. First, it directly measures technological

developments while previous studies often rely on proxies to measure technological

changes. Krusell et al. (2000) and Caunedo et al. (2021) use changes in the price of
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capital goods as a proxy for technical changes. While this approach was successful to

explain the observed changes in skill premium, it is not clear what this indirect measure

captures. The price of capital goods might be affected by various supply and demand

factors other than technical changes. On the other hand, this paper uses patent data

that are commonly used in innovation literature to measure technical changes (e.g.,

Akcigit et al. (2017)). Second, it covers universal tools with the entire occupations in

the economy. Although many papers study important technology such as computers

(Autor et al., 2003; Burstein et al., 2019) or robots (Acemoglu and Restrepo, 2020),

this paper covers expansive technology, which allows cross-sectional variation across a

broader set of occupations.

With the technology measure and the labor market variables at the occupation level,

we first provide reduced-form results. We show that tool innovation grew more in skill-

intensive occupations. Then, we find that tool innovation is positively associated with

the change of wage, employment, skill premium, and skill intensity at the occupation

level by running long-difference OLS. This suggests that tool innovation increases the

demand for occupation and favors skilled workers. Since the unobserved demand factor

of occupation might be correlated with the tool innovation, there is a potential endo-

geneity problem in the OLS. We constructed an instrumental variable by collecting

“upstream” patents that are not in the same industry sector but induce knowledge

spillover to a given patent class1. The results from IV are qualitatively the same as

the OLS.

Next, to quantify the effect of tool innovation on skill premium in a general equilibrium

setting, we build a simple aggregate production function with occupational inputs

1For example, we use patents in electricity as IV for patents in the IT sector. We assume that
innovation in electricity is correlated with innovation in IT as there is knowledge spillover from elec-
tricity to IT, but it is not correlated with other demand shocks of IT workers. Knowledge spillover is
estimated by the citation network of patents as in Cai and Li (2019)
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and estimate parameters of the production function. A representative firm has an

aggregate production function that aggregates tasks done by occupations, and skilled

and unskilled workers are imperfect substitutes in each occupation. Motivated by the

reduced form evidence, we assume that tool innovation increases labor productivity.

We also allow the complementarity with the productivity of tools to be different for

skilled and unskilled labor. Based on the model, we estimate structural parameters

using the Generalized Method of Moments. We then run a counterfactual exercise to

identify the quantitative importance of the tool innovation channel. We find that the

tool innovation alone can explain 61% of the total demand factor that contributed to

the skill premium increase. The remaining 39% is an unobserved demand factor that

favors skilled workers.

1.1 Related Literature

We first contribute to the long debate on the rising skill premium. Skill premium, often

represented by the wage premium of college-educated relative to non-college-educated,

has steadily risen since the 1980s in most developed and developing countries. Many

previous studies attribute the increase in the skill premium to the skill-biased technical

change (Acemoglu, 2002b; Violante, 2008). Their arguments rely on the complementar-

ity of capital equipment or computer technology to the skilled labor as in Greenwood

and Yorukoglu (1997) and Krusell et al. (2000). Those studies often use time-series fluc-

tuations on skill premium and technology investments to infer the source of increases in

skill premium. We, on the other hand, investigate occupation-specific developments on

tools represented by the number of patents and how these technological changes affect

the wage, employment, and skill premium at the occupation level. This cross-sectional

variation makes it possible to control secular trends in demand for skilled labor that do

not necessarily result from changes in production equipment, such as changes of firm
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or trade structures.

This paper is one of the first papers that estimate the aggregate production function

with occupational inputs. The structure is comparable to the task-based approaches

which became increasingly popular after the 2000s. Since the seminal work by Autor et

al. (2003), the unit of analysis for the impact of technical changes on the labor market

has been a task, which is often categorized as routine, cognitive, abstract, or manual.

Technical changes in computerization or robotization are regarded as increases in the

capital that substitutes labor inputs in cognitive and manual tasks. These task-based

approaches offer a powerful framework for the analysis of labor-substituting technolo-

gies both empirically and theoretically (Autor and Dorn, 2013; Acemoglu and Restrepo,

2018; Cortes et al., 2017). We contrarily focus on labor-augmenting technologies that

are potentially be more skill-biased, and the unit of analysis is occupation-specific tasks.

Occupation is a more informative unit of analysis in this case because of variations in

tools used in each occupation. As long as some tools have more technical changes than

others and those tools are used by only a subset of occupations, the differences in the

wage or employment changes can be regressed on those innovations on tools even when

both occupations have non-routine and abstract tasks.

This paper is related to the literature on the quantitative occupation-choice model.

Lee and Wolpin (2006) are one of the earlier studies that incorporated the occupation-

choice model to quantify the contribution of technology growth in the service sector,

as opposed to the decrease in mobility costs, on the employment growth of the service

sector. A recent study by Hsieh et al. (2019) analyzes the occupation choice of workers

heterogeneous of race and gender to analyze the impact of reallocation of worker talent

across different occupations over time. This paper also addresses the issue of workers

allocation over different occupations. This paper emphasizes the technological origin

of labor reallocation from the 1980s to the 2010s. Because of technological develop-
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ments being heterogeneous across occupations, skilled workers in an occupation are

reallocated from other occupations. Moreover, tool innovation is more complementary

to skilled labor than to unskilled labor. As a result, with more innovation on tools

over time, unskilled labor is substituted more with skilled labor within occupations.

Cortes et al. (2017) also consider the technical change as a source of disappearing

routine jobs, but they do not measure and use technological changes directly in their

analysis. Burstein et al. (2019) focuses on computer usage at workplaces. They use

occupation-level variations in fractions of workers using computers on the job to quan-

tify the importance of skilled workers’ comparative advantage in computer usage for

analysis of rises in skill premium since the 1980s. This paper carefully constructs the

measure of innovation on tools using patent data and uses the occupational differences

in the number of patents matched to each occupation.

Lastly, this paper is related to a growing literature that applies textual analysis to

patent data. Kelly et al. (2018) calculate text similarity between patents and identify

breakthrough innovations which are distinct from the previous inventions but similar

to the following inventions. Argente et al. (2020) match patents with product data

from Nielson, by calculating text similarity between patents and product descriptions.

Zhestkova (2020) matches patents with Wikipedia articles to cluster technology sectors

by using similar textual analysis techniques. Bloom et al. (2021) match patent with an

earnings call and job posting to study the diffusion of disruptive technology over time.

Webb (2019) would be the most relevant papers with ours where he matches patent

with the occupation’s task description to measure the exposure to automation. He

finds that the occupations with higher exposure to automation experienced decreasing

wages and employment. While he studies technology that substitutes labor, we focus

on the technology of tools that are complement labor.

The remainder of the paper is organized as follows. Section 2 explains the data used.
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Section 3 shows reduced-form evidence. Section 4 presents the result from structural

estimation. Section 5 runs counterfactual exercises. Section 6 concludes.

2 Data

2.1 Overview

Our goal is to measure innovation on tools and study its impact on occupation-level

outputs such as employment and wage. We measure innovation from patent data. One

big challenge is how to match patents to different tools. We calculate text similar-

ity between tool and patent to overcome this challenge. By classifying the patents

into different tools, we quantify the innovation on each tool. Then, we aggregate this

measure of innovation into occupation level by using the tool - occupation data from

O*NET. Lastly, we connect this with occupation level variables such as wage, employ-

ment, college premium from Census data. Figure 2 summarizes the whole procedure.

2.2 Innovation on Tools

Occupation - tool data Tool data is from “tools used” data in O*NET2, where we

can see a list of tools used by different occupations. O*NET collects data about tools

such as machines or equipment that are used by workers and essential to perform their

occupation roles (Dierdorff et al., 2006). For example, aerospace engineers use tools

such as lasers, atomic force microscopes, and construction laborers use asphalt saws,

electric drills. We have 775 occupations where each of them has 39 tools on average3.

There are 4,180 unique tools in the data. Tools have their title and United Nations

2We use the version of 25.0 which is updated in August 2020.
3Its median is 29 and the standard deviation is 36.4.
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Figure 2: Summary of the data construction process
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Standard Products and Services Code (UNSPSC).

Tool description data To calculate text similarity between tools and patents, we

need a sufficiently long description of them. We have an abstract and full article for

the patent but we only have a short title for the tool. We decide to use the Wikipedia

page of tools as the description of the tool. Wikipedia has broad coverage of products,

and its articles usually include a technical description, which makes it easy to match

with patents. We search the title of tools using Wikipedia API4 and download the

entire text of the corresponding article. Among 4,180 tools, we could find Wikipedia

pages for 1,825 tools.

Patent data To measure the innovation, we use patent data from the United States

4‘wikipediaapi’ package in Python can be found in https://pypi.org/project/wikipedia/. We down-
loaded the data in 02/28/2021.
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Patent and Trademark Office (USPTO)5. It has the entire patent data registered in the

U.S. We use application year, technology classes, type of patents, title, and abstract

of patents. We use application year instead of grant year for the analysis since the

application year is closer to the actual innovation year. We restrict our samples to

utility patents and exclude design patents to focus on technological improvement. In

the end, we have 6.1 million utility patents in 1970-2015.

2.3 Matching patent with tool

Our main goal is to find corresponding tools for each patent. We use natural language

processing to calculate the similarity between Wikipedia articles of tools and patent

text following the literature such as Argente et al. (2020) and Zhestkova (2020). The

similarity score is calculated by counting the proportion of overlapped words between

two texts.

Before matching the two texts, we follow the common procedure in natural language

processing literature to clean the texts. First, we remove “Stopwords”. “Stopwords”

are the most common words in English and do not have important meanings. For

example, “is”, “where”, “have” are classified as “stopwords”. We remove them to

avoid matching two texts just because they share a lot of the function words but do

not share meaningful words. Then, we lemmatize words to convert words into their

standard form6. For example, we change “generating” or “generated” to “generate”.

Lemmatizing helps us to match words that have the same meaning but in different

forms. We repeat the title of the patent and the Wikipedia page 3 times as they

summarize important information. The description of the IPC class at 4 digit level is

also included 3 times. As most of the patent abstracts are shorter than 5,000 characters,

5The bulk file is downloaded through https://patentsview.org
6We use the NLTK package in python. https://pypi.org/project/nltk/
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we truncate both Wikipedia and patent texts by 5,000 characters in length.

Next, we calculate the pairwise similarity between patents and tools. We transform the

cleaned texts into two-word combinations which are called “bigrams”. For example,

there are bigrams such as “combustion engine”, “air-fuel” in the oxygen sensor patent.

Following Bloom et al. (2021), we use bigrams instead of single words since they have

more clear meaning than single words7. For instance, “ratio” appears in a lot of

documents and does not have a clear meaning while “air-fuel ratio” has a more clear

meaning.

Then, we vectorize each text and compute cosine similarity. This cosine similarity

represents the share of overlapped bigrams between two texts. We also consider the

fact that the importance of words would be smaller if they are used commonly. We

use the term frequency-inverse document frequency (TF-IDF) to appropriately weigh

words. ωij which is the weight of words i in document j is as below.

ωij = TFij · IDFi

TFij =
fij∑
i fij

IDFi = log(
J∑

j 1{i ∈ j}
)

(1)

J is the number of total documents. Therefore, IDFij is higher when the bigram

appears frequently in the document but is lower when it appears in other documents

as well. This transformation helps us to match two texts that have meaningful common

words. The final similarity is between 0 to 1 by construction. If the score is 0, there

are no common words and if the score is 1, the two texts are identical.

We assign patents to tools using the computed similarity. Some innovations might not

7Our results are qualitatively similar when we use single words instead of bigrams.
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be relevant to any of the tools in the data and some innovations might be relevant to

many tools. Therefore, we allow multiple matching or non-matching depending on the

similarity score. We keep at most 5 tools for each patent and keep the matching if the

similarity score is higher than 0.0258. As a result, 27% of patents are matched with

at least one tool. Table 1 shows the summary statistics of patents for each tool. Over

time, more and more patents are matched to tools because more patents applications

are made. The matching rates are stable over time. Example 1 shows an example

of sample paragraphs of matched patents and tools. Blue words are the common

bigrams in both texts. The text-matching algorithm succeeds in identifying a patent

that improves the efficiency of the oxygen sensor.

Table 1: The number of patent matched to each tool

Mean Sd Median 1Q. 3Q. N. Matching rate (%)

Patent (1970s) 39.53 94.94 7.92 2.00 30.65 1,802 23.83%
Patent (1980s) 81.93 190.84 17.18 4.23 66.00 1,802 23.87%
Patent (1990s) 152.86 410.81 30.70 8.67 115.23 1,802 23.49%
Patent (2000s) 264.11 806.38 43.90 13.67 175.75 1,802 23.00%

Notes: Matching rate is the number of matched patent divided by the number of total patents in a
given period

8It is same as Argente et al. (2020). We conducted the same exercises with flexible thresholds but
the result roughly stays the same.
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Example 1

Patent: System and method for

detecting deterioration of oxygen

sensor

feedback type air-fuel ratio control sys-

tem control air-fuel ratio air-fuel mix-

ture fed internal combustion engine ac-

cordance information signal issued first

oxygen sensor installed exhaust line en-

gine exhaust line catalytic converter

position downstream first oxygen sen-

sor provided system control system de-

tects deterioration first oxygen sensor

Wikipedia: Oxygen sensor

oxygen sensor lambda sensor lambda

refers air-fuel equivalence ratio usu-

ally denoted electronic device measure

proportion oxygen gas liquid analysed

common application measure exhaust

gas concentration oxygen internal com-

bustion engine automobile vehicle order

calculate required dynamically adjust

air-fuel ratio catalytic converter work

optimally.

Next, we aggregate the measure of innovation on tools at the occupation level. One

occupation often uses multiple tools. We calculate the average number of patents for

each occupation and consider it as occupation-level innovation on tools. To be specific,

we sum the number of patents within the occupation and divide by the number of tools

that have Wikipedia articles. Table 2 shows an example where the innovation on tools

for the baker is (15+10+10+5+5)/5=9.

As a result, we construct innovation on tools for each occupation. Table 3 shows

summary statistics of the matching. The occupations without any matched patent is

excluded from the analysis below. As a result, only 324 occupations are considered

in the regression. The ‘Skilled’ row means the group of occupations that have skill

intensity larger than the median in 1980. The ‘Unskilled’ row consists of all the other

occupations. Skill-intensive occupations have more innovations on tools.
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Table 2: Example of counting patents at occupation level

Occupation Tools Wikipedia found Patents

Bakers Automatic dough presses Yes 15
Bakers Bagel dividers Yes 10
Bakers Baking frames Yes 10
Bakers Baking sheets Yes 5
Bakers Balance scales Yes 5
Bakers Barquette molds No .

Table 3: The number of patents matched to each occupation

Mean Sd Median 1Q. 3Q. N.

Skilled 3.60 0.67 3.55 3.07 4.06 162
Unskilled 2.88 0.47 2.73 2.56 3.17 162
Total 3.24 0.68 3.09 2.71 3.66 324

Notes: ‘Skilled’ row is the set of occupations that have skill intensity larger than the
median in 1980. ‘Unskilled’ row contains all the others.

The top five occupations in terms of patent growth are Legislators, Film and Video

Editors, Web Developers, First-Line Supervisors of Non-Retail Sales Workers, Desktop

Publishers. The bottom 5 occupations are Tailors, Textile Knitting and Weaving Ma-

chine Setters, Fabric Menders, Sewing Machine Operators, and Electrical Drafters.

2.4 Labor Market Variables

2.4.1 Occupation-level Information

Data from the Census Bureau is used to construct mean wage and employment level

by occupation, year, and skill group. We use the Decennial Census 1980 and the

American Community Survey (ACS) from 2015 to 20199 for observations in 1980 and

2015, respectively. Mean wage is measured by the average weekly wage earnings and

9We use the ACS samples from multiple surveys to increase the size of the samples used in each
occupation and skilled labor cell.
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computed as the annual labor income divided by the number of weeks worked last year.

Employment size at the occupation level is the number of people with the occupation

code last year. Only samples with 40 weeks of work or more in the previous year are

considered in constructing the average. Each observation is weighted by the individual

sampling weight offered by the Census Bureau. Skilled labor is defined by workers who

experienced some post-secondary education. The occupation codes are harmonized

using the OCC1990 variable provided by the Integrated Public Use Microdata Series

(IPUMS) and are switched to the Standard Occupational Classification Code (SOC

Code) using correspondence between the OCC1990 and the SOC Code variables in the

ACS 2010-201910.

The top two rows of Table 4 summarize growth rates of employment and mean wage.

across different occupations. When calculating the statistics, each occupation is weighted

by its wage bill share in 1980. An average occupation had a 77 percent increase in em-

ployment size, and the mean nominal wage almost tripled. However, occupations were

heterogeneous in terms of their growth. The bottom two rows of Table 4 show how

college premium and skill intensity have changed in the period at the occupation level.

The skill premium is defined as the ratio between the mean wage of workers with some

college education and the mean wage of workers without any college education, and

the skill intensity is the fraction of workers with some college education in the total

employment at the occupation level. On average, college premium increased by 9.5 per-

centage points, and skill intensity increased by 22 percentage points, but the change

is heterogeneous across occupations as well. This increase in within-occupation skill

premium alone can account for 37% (9.5/26) of the entire increase in skill premium

10In a robustness check with within-occupation industry variations, we further decompose the em-
ployment size, wage level, and college premium at the occupation level into occupation-by-industry
level using the NAICS industry code. For the Decennial census, the NAICS was not reported. As a
result, we construct a similar crosswalk mapping between the IND1990 and the NAICS codes using
the ACS 2010-2019.
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during that period. Some occupations do not have unskilled workers. Thus, one occu-

pation out of 324 has missing values of within-college premium and skill intensity of

one.

Table 4: Summary Statistics of Occupation-level Changes

Mean Sd Median 1Q. 3Q. N.

Employment Growth 0.77 8.38 0.46 -0.13 1.13 324
Wage Growth 2.71 1.03 2.55 2.11 3.22 324
D. College Premium (ppt) 9.50 14.17 8.99 2.96 12.69 323
D. Skill Intensity (ppt) 22.10 6.12 22.23 19.47 26.50 324

Table 5 shows the employment and wage growth across skilled and unskilled occu-

pations at the occupation level11. The employment of skilled labor grew while the

employment of unskilled labor decreased on average. Moreover, the mean wage of

skilled labor increased by more than the mean wage of unskilled labor. Given that the

relative wage increased more in favor of skilled labor as well as the relative employ-

ment, the demand factor is likely to play a key role in the rise in the skill premium in

the 1980-2015 period.

Table 5: Summary Statistics of changes in 1980-2015

Mean Sd Median 1Q. 3Q. N.

Skilled Employemnt Growth 0.74 1.12 0.47 0.26 0.86 324
Unskilled Employment Growth -0.34 0.48 -0.49 -0.56 -0.31 324
Skilled Wage Growth 2.67 0.95 2.57 2.18 3.11 324
Unskilled Wage Growth 2.41 0.87 2.36 1.92 2.74 323

11Each occupation is weighted by the wage bill share in 1980.
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2.4.2 College Graduates Major Information

Later in the structural estimation, an occupation-specific supply shifter is needed to

estimate the demand elasticity. We construct a Bartik-type supply shock as an instru-

mental variable for the demand curve estimation. The composition of college majors

in each occupation code comes from the American Community Survey (ACS) from

2010-2019, which asks the major of study for college-educated as well as their current

occupation. We use only workers younger than 40 to construct the composition. Then,

using the number of Bachelor’s degrees conferred by postsecondary institutions in the

Digest of Education Statistics (DES), we construct the growth rates of college gradu-

ates in each major12 between 1980 and 201313. Finally, the occupation-specific supply

shifter, z2o80−13 is constructed by the following equation.

z2o80−13 =
∑
m

ωom
(
log nm,13 − log nm,80

)
,

where ωom is the share of college major m in skilled labor employment of occupation o,

and
∑

m ωom = 1 and nm,t is the number of college graduates with major m in year t

(80 for 1980 and 13 for 2013). For some college majors that did not have any graduates

in 1980, this measure is undefined thus excluded.

Tables 6 and 7 show the majors and the occupations that had the largest and smallest

increases in supply. The number of college graduates in transportation and materials

moving increases the most between 1980 and 2013. This is followed by parks, recreation,

leisure, and fitness studies and legal professions and studies. Library science, education,

agriculture record the smallest increases in graduates among college majors. In Table

7, occupations in healthcare and protective services have the largest supply shocks

predicted by the composition of college graduates’ majors within each occupation in the

12We only consider the first Bachelor’s degree.
13We manually matched the major codes in the ACS and the DES. Appendix C shows the matching.
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ACS, followed by protective and material moving occupations that include commercial

pilots and ship and flight engineers. College graduates with the same major end up

working in various occupations. As a result, the occupations with the highest supply

shock measures do not correspond to the majors with the largest increase in college

graduates.

3 Reduced Form Evidence

3.1 OLS result

In this section, we present reduced-form evidence that innovation on tools is associated

with a larger increase in skill premium at the occupation level. In particular, we show

that 1) tool innovation has been concentrated in skill-intensive jobs, 2) is positively

associated with wage and employment, which indicates tool innovation increases the

demand of occupations, 3) is positively correlated with changes in skill premium and

skill intensity, which implies that it increases the demand for skilled workers relative

to the demand for unskilled workers. We set 1980 as our initial year and obtain

a correlation between the growth rate of patents in 1980-2015 with other variables

including wage, employment, and the skill premium.

Figure 3 shows that tool innovation is biased toward skill-intensive occupations. Skill

intensity in the figure is the share of college-graduate (or above) workers in 1980.

The patent growth is defined as log(Patento,1980−2015) − log(Patento,1970−1980) at the

occupation level, and the wage growth is defined as log(wageo,2015) − log(wageo,1980).

Each circle represents an occupation, and the size of the circle is proportional to the

employment in 1980. The patent growth measure has correlations with task scores at

the occupation level. Figures 9, 10, and 11 in Appendix A show that patent growth is

positively associated with abstract task scores but negatively associated with routine
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Table 6: Majors Ranked by the Supply Growth

Rank Major D log

1 Transportation and materials moving 286%
2 Parks, recreation, leisure, and fitness studies 208%
3 Legal professions and studies 176%
4 Homeland security, law enforcement, and firefighting 152%
5 Military technologies and applied sciences 148%
6 Multi/Interdisciplinary studies 131%
7 Computer and information sciences 130%
8 Health professions and related programs 114%
9 Communication, journalism, and related programs 109%
10 Area, ethnic, cultural, gender, and group studies 105%
11 Psychology 105%
12 Communications technologies 99%
13 Biological and biomedical sciences 89%
14 Visual and performing arts 88%
15 Liberal arts and sciences, general studies, and humanities 74%
16 Public administrations and social services 70%
17 Mathematics and statistics 64%
18 Business 58%
19 Philosophy and religious studies 57%
20 Foreign languages, literatures, and linguistics 56%
21 Social Sciences and history 54%
22 Theology and religious vocations 51%
23 Agriculture and natural resources 47%
24 English language and literature/letters 46%
25 Engineering 37%
26 Engineering Technologies 36%
27 Family and consumer sciences/human sciences 30%
28 Physical sciences and science technologies 20%
29 Agriculture and Related Sciences -3%
30 Education -9%
31 Library Science -108%
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Table 7: 2-Digit SOCs Ranked by the Supply Growth

Rank Occupation Supply Shock

1 Healthcare Support Occupations 97%
2 Healthcare Practitioners and Technical Occupations 96%
3 Protective Service Occupations 96%
4 Transportation and Material Moving Occupations 91%
5 Arts, Design, Entertainment, Sports, and Media Occupations 80%
6 Installation, Maintenance, and Repair Occupations 74%
7 Office and Administrative Support Occupations 73%
8 Building and Grounds Cleaning and Maintenance Occupations 71%
9 Sales and Related Occupations 71%
10 Legal Occupations 70%
11 Computer and Mathematical Occupations 70%
12 Food Preparation and Serving Related Occupations 69%
13 Production Occupations 68%
14 Personal Care and Service Occupations 67%
15 Construction and Extraction Occupations 67%
16 Business and Financial Operations Occupations 65%
17 Management Occupations 64%
18 Life, Physical, and Social Science Occupations 64%
19 Community and Social Service Occupations 62%
20 Farming, Fishing, and Forestry Occupations 60%
21 Architecture and Engineering Occupations 47%
22 Education Instruction and Library Occupations 41%
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Figure 3: Initial Skill Intensity and Tool Innovation Growth

and manual task scores.

Figure 4a tells that tool innovation growth is positively associated with wage growth,

where wage growth is defined by log(wageo,2015) − log(wageo,1980). Figure 4b shows

tool innovation growth is positively correlated with employment growth. Employment

growth expresses log(empo,2015)− log(empo,1980)

Figure 5a shows that tool innovation growth is positively associated with skill pre-

mium increases within each occupation, where skill premium change is defined as

Skill premiumo,2015 − Skill premiumo,1980. Also, Figure 5b shows that tool innovation

growth is positively correlated with skill intensity increases. Skill intensity change

means Skill intensityo,2015 − Skill intensityo,1980. The positive correlation suggests that

tools are more complementary with skilled workers so the innovation on tools increases
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Figure 4: Tool innovation growth and wage, employment growth
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Figure 5: Tool innovation growth and relative wage, employment growth
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the relative wage and employment of the skilled worker.

Table 8: OLS result

∆yo,1980−2015 = β0 + β1∆ log po,1980−2015 + εo

(1) (2) (3) (4)
Wage Emp. Skill Pre. Skill Int.

patent 0.0845∗∗∗ 0.144∗∗∗ 0.0440∗∗∗ 0.0165∗∗∗

(0.0115) (0.0411) (0.00753) (0.00329)
N 324 324 323 324

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8 shows results from the OLS regression. Columns 1-4 show the baseline result

in figure 4a, 4b, 5a, 5b. One standard deviation increase in patent change variable is

associated with 8.27% increase in wage, and 14.1% increase in employment. Also, it is

associated with 4.31% increase in skill premium, and 1.62% increase in skill intensity.

All regressions use wage bills in 1980 at the occupation level for weights.

While we count all patents with the same weight, patents usually have different eco-

nomic values. Some radical innovations might be more valuable than other marginal

innovations. To capture the heterogeneous value of patents, we use results from Ko-

gan et al. (2017), where they measure the monetary value of the US patents from

stock market data. We weigh our tool innovation measure by their values and run the

same regression as robustness checks. Table 9 shows similar results as the previous

table.

For a robustness check, we control industry-specific factors that are related to demand

changes. We first decompose workers in the same occupation into different industries

of their employers. We then include sectoral fixed effects at the 3-digit NAICS level to

control industry-specific shocks. For instance, there has been a structural transforma-

tion where the employment share of manufacturing decreases while that of the service
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Table 9: OLS result, monetary value weighted patents

∆yo,1980−2015 = β0 + β1∆ log po,1980−2015 + εo

(1) (2) (3) (4)
Wage Emp. Skill Pre. Skill Int.

patent (value) 0.0458∗∗∗ 0.0898∗ 0.0316∗∗∗ 0.0112∗∗∗

(0.0103) (0.0353) (0.00650) (0.00283)
N 324 324 323 324

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

sector increases. Table 14 in Appendix B.1 shows the result is similar to the baseline

case.

3.2 Endogeneity Concern and IV result

Innovation on tools has an endogeneity problem if the technical change is directed by

the demand factor, as suggested by Acemoglu (2002a). For example, when there is

another demand shock for IT sector workers, the value of innovation in the IT sector

will increase, which leads to the increase in the innovation incentive on tools in the IT

sector such as a computer. Innovation on tools can be correlated with this unobserved

demand shock which affects wage, employment, and college premium.

To tackle this problem, we construct the “upstream” innovation measure. We exploit

the fact that the knowledge production function is interconnected with other sectors in

the sense that one technology field uses knowledge from many other fields. For example,

innovation in the computer sector uses knowledge from more basic research fields such

as electricity. Innovation in the electricity sector would be positively correlated with

innovations in the computer sector. However, it is plausible that innovation in elec-

tricity is not correlated with demand shock in the IT sector. We use this “upstream”

innovation as our instrumental variable.
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We use citation network structure to identify upstream sectors in patent data following

Cai and Li (2019). To register a patent in the USPTO, the authors need to disclose

background knowledge used for the new invention. If the patent cites other patents, we

assume that the patent uses knowledge from the cited patents. We use the 3-digit IPC

that has 270 unique classes in the citation network. First, we collect all the citations

in 1970-2015. Then, for each technology class, we construct the upstream measure as

follows.

αij =
cij∑

{j:s(j) 6=s(i)} cij
(2)

cij is the number of citations from class i to j. αij indicates the degree of dependence

of class i on class j. We may concern that some technology classes are very similar and

they share the same demand shock. To avoid this problem, we exclude the combination

of classes if i and j are in the same 2-digit NAICS. Finally, we construct the following

variable for each technology class.

∑
{j:s(j)6=s(i)}

αij∆ logPj (3)

Each tool has innovations from different technology fields. We aggregate variables by

the share of technology class in each tool, then aggregate them into occupations.

Table 10 shows the IV regression results. All regressions are weighted by the wage bills

of occupations in 1980. F-statistics from the first stage regression indicate that the

instrument is strong enough. The coefficients are similar to the result from the OLS

where tool innovation growth is associated with wage and employment of occupations

and correlated with the relative wage and employment of skilled workers. Table 15 in

Appendix B.2 describes the result where we use value-weighted patents as in Table 9.

The results are similar to the baseline case.
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Table 10: IV result

∆yo,1980−2015 = β0 + β1∆ log po,1980−2015 + εo

(1) (2) (3) (4)
Wage Emp. Skill Pre. Skill Int.

patent 0.119∗∗∗ 0.0600 0.0406∗∗∗ 0.0297∗∗∗

(0.0156) (0.0551) (0.0100) (0.00449)
N 324 324 323 324
F (first stage) 410.8 410.8 409.6 410.8

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

There can be a remaining concern that “upstream” sectors are still correlated with the

demand shock of the occupations. To avoid this problem, we construct instrumental

variables with publication data where we exploit the fact that many patents obtain

knowledge spillover from academic papers. Marx and Fuegi (2020) provide citation

data from patents to academic papers in Microsoft Academic Graph (MAG hereafter,

Sinha et al. (2015)) and 27% of USPTO patents cite academic papers. Similar to the

baseline IV, we leverage the fact that different patent classes have different shares of

citations to different academic fields. We use the OECD subfield where we have 42

different classifications14 and calculate citation share using pre-period samples. For the

growth rate of papers, we collect all papers across different fields in MAG and calculate

the growth rate in 1980-2015. Table 11 shows that the result is both quantitatively

and qualitatively similar to the baseline IV result.

14We have fields such as mechanical engineering and chemical science
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Table 11: IV result with academic publications

∆yo,1980−2015 = β0 + β1∆ log po,1980−2015 + εo

(1) (2) (3) (4)
Wage Emp. Skill Pre. Skill Int.

patent 0.0963∗∗∗ 0.0562 0.0489∗∗∗ 0.0191∗∗∗

(0.0156) (0.0558) (0.0102) (0.00443)
N 324 324 323 324
F (first stage) 390.5 390.5 389.3 390.5
sector fixed no no no no

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4 Structural Estimation

4.1 Model

For structural estimation, we assume that representative firms have the following ag-

gregate production function with occupational inputs.

Yt = Zt

∑
o

αot

(
λot (xotsot)

σ−1
σ + (1− λot)

(
xδotuot

)σ−1
σ

) σ
σ−1

ρ−1
ρ


ρ
ρ−1

This specification is similar to the task-based approach popularized by Acemoglu and

Autor (2011), but we substitute tasks with occupations. In this specification, the tasks

performed by different occupations are imperfectly substituted with the elasticity of

substitution ρ > 0. The occupation-specific shock αot governs the demand for certain

occupations and is normalized such that
∑

o αot = 1. Moreover, each occupation task

takes skilled and unskilled labor inputs imperfectly with the elasticity of substitution

σ > 0. xot is the innovation on tools, measured by the number of patents applied

to the tools used in that occupation constructed in Section 2.3. The parameter δ is
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the loading of xot on unskilled labor relative to skilled labor. δ < 1 means that the

productivity of unskilled labor increases by less with a higher xot than the productivity

of skilled labor and vice versa. The other parameter, λot, is the demand shock for

skilled labor relative to unskilled labor within an occupation. The occupation without

any unskilled labor can be understood as λot = 1.

Given the prices, the representative firm solves the following problem.

max
sotuot

{
Zt

∑
o

αot

(
λot (xotsot)

σ−1
σ + (1− λot)

(
xδotuot

)σ−1
σ

) σ
σ−1

ρ−1
ρ


ρ
ρ−1

−
∑

wuotuot −
∑

wsotsot

}
(4)

The first-order conditions of Equation 4, after taking logs, are given as the following

equations.

log

(
wsot
wuot

)
= log

(
λot

1− λot

)
+
σ − 1

σ
(1− δ) log (xot)−

1

σ
log

(
sot
uot

)
(5)

log

(
wsot
ws1t

)
= log

(
λot
λpt

αot
α1t

)
+

ρ− σ
ρ (σ − 1)

log

(
θot
θ1t

)
+
σ − 1

σ
log

(
xot
x1t

)
− 1

ρ
log

(
sot
s1t

)
(6)

θot :=

(
λotx

σ−1
σ

ot + (1− λot)x
(σ−1)(δσ−σ+1)

σ
ot

(
1− λot
λot

wsot
wuot

)σ−1)
. (7)

Equation 5 defines within-occupation demand for skilled and unskilled labor. The

relative demand for skilled labor decreases in within-occupation skill premium with a

constant elasticity σ. If δ < 1, the demand curve for skilled labor shifts to the right

with a higher xot, increasing within-occupation skill premium.
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Equation 615 sets up the relative demand for skilled labor across occupations. The

relative demand has the demand elasticity of ρ, and a higher xot relative to a base-

line occupation o = 1 shifts the demand curve to the right. This implicitly assumes

the technological complementarity between innovation on tools and the skilled labor,

motivated by the reduced form evidence in Section 3.

We estimate the structural parameters sequentially using the Generalized Method of

Moments (GMM). First, we take differences between 1980 and 2015 over Equations 5

and 6. The purpose of differencing is to minimize time-invariant measurement errors

in matching tools with occupations16. Second, we estimate the first equation at the

occupation level after assuming that Cov(∆tλot,∆tz
i
ot) = 0, where i = 1, 217. z1ot is

the upstream patent IV constructed in Section 2.3, and z2ot is the Bartik-style skilled

labor supply shock from the number of college graduates for each major constructed

in Section 2.4.2.

Next, Equation 6 is estimated using the GMM with ∆tz
1
ot − ∆tz

1
1t and ∆tz

2
ot − ∆tz

2
1t

as two instruments. The composite term in Equation 6, θot, can be calculated after

the first regression after obtaining λot as residuals. This across-occupation regression

is over-identified with two instrumental variables and one coefficient. This regression

also gives the estimates for log(αot/α1t) as residuals.

On the supply side, I assume a simple labor market supply function with a constant

15The composite term θot is defined in Equation 7.
16Suppose the text-matching procedure overestimates the number of meaningful innovations on laser

cutter relative to other tools. Then, the differencing controls for multiplicative measurement errors
on xot.

17To identify two parameters, we need two instruments.
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elasticity.

sot =

(
exp(logwsot + εsot)∑
o′ exp(logwso′t + εso′t)

)ηs

Lst

uot =

(
exp(logwuot + εuot)∑
o′ exp(logwuo′t + εuo′t)

)ηu

Lut

This supply function can be micro-founded by a discrete choice model á la McFadden

(1973) with log indirect utility function, a common supply shock, and the Type 1

Extreme Value idiosyncratic shock across a continuum of households with size Lst for

skilled labor and Lut for unskilled labor. I further assume ηs = ηu = η. Notice that

we deliberately avoid the option for home production for the tractability of the model.

We use observations for skilled labor in 2015 to estimate η. Specifically, the regression

equation is described as the following.

log

(
sot
s1t

)
= η (logwsot + εsot − logws1t − εs1t)

The supply elasticity is estimated through a similar GMM procedure, with xot as the

instrumental demand shifter. For the counterfactual analysis below, please note that

the relative skill supply equation within each occupation is given as

log

(
sot
uot

)
= ηs log

(
wsot
wuot

)
+ (ηs − ηu) logwuot + ηs (εsot − εuot)

+ (ηs − ηu) (εuot) + log L̃st − log L̃ut

log

(
sot
uot

)
= η log

(
wsot
wuot

)
+ η (εsot − εuot) + log L̃st − log L̃ut ,

where log L̃st = logLst−η log
(∑

o′ exp(logwso′t + εso′t)
)

and log L̃ut = logLut−η log
(∑

o′ exp(logwuo′t + εuo′t)
)
.

Along with Equation 5, this supply equation determines within-occupation skill pre-

mium and relative employment.
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4.2 Results

Table 12: GMM Estimates

Parameter δ σ ρ η

Estimate 0.94 11.11 1.40 2.40
SE (0.03) (10.47) (0.13) (0.64)

Table 12 summarizes the structural results. The estimate for δ is 0.94 and significantly

smaller than 1, the normalized loading on the demand for skilled workers, at the

5% significance level. This estimate implies that the effect of innovation on tools

is larger for skilled workers. As a result, the skill premium within occupations tends to

increase with a higher value of log xot. This tool-skill complementarity is comparable

to the capital-skill complementarity pointed out in Krusell et al. (2000). Unlike the

model-based accounting exercise in Krusell et al. (2000) that uses only aggregate-level

time-series about capital and skill-premium, our exercise exploits the across-occupation

variations of technological improvements on tools to show that the occupations with

more innovation on tools actually experienced a larger increase in skill premium within

each occupation.

Next, the estimate for within-occupation elasticity of substitution, σ, is 11.1, with a

large standard error. This estimate is larger than estimates of substitutability be-

tween skilled and unskilled labor within an aggregate production function18. The

large standard error of the estimate suggests that occupations are heterogeneous in

terms of within-occupation elasticity of substitution between skilled and unskilled la-

bor. Caunedo et al. (2021) recently report that matches tools in O*NET to the capital

stock series of the national accounts (NIPA). Moreover, although the large standard

error of the estimate for σ makes it difficult to compare the estimate, the estimate,

18For example, in Krusell et al. (2000), the demand elasticity between skill groups was estimated
to be 1.67.
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11.11, is greater in magnitude than the estimate for across-occupation demand elas-

ticity, 1.40. The higher within-elasticity implies that the representative firm tends to

substitute unskilled labor with skilled labor rather than put more skilled labor from

other occupations when the relative productivity of skilled labor increases in an occupa-

tion. As shown in the counterfactual analysis below, this is why the within-occupation

channel is more important in generating the rise in skill premium than the across-

occupation channel. The across-elasticity estimate being close to one suggests that

the aggregate production function is close to the Cobb-Douglas form across occupa-

tions, which was assumed in the baseline task-based approach in Acemoglu and Autor

(2011).

This estimate of across-occupation demand elasticity is smaller than the number as-

sumed in Hsieh et al. (2019), 3, which do not consider the within-occupation substitu-

tion between skilled and unskilled labor. The number is also smaller than the number

in Burstein et al. (2019) that estimates the elasticity of substitution to be roughly

1.81 − 2.1. Their framework, unlike ours, assumes that the comparative advantage

of skilled workers in using computers within each occupation is fixed, but the pro-

ductivity increase in computer equipment is constant across all occupations. In this

case, all within-period occupation fluctuations in skill premium are loaded as compar-

ative advantage of skilled workers, and the growth of computer technology tends to

be understated. As a result, their estimation equation that regresses the total labor

income of a demographic group in each occupation on the computer productivity is

likely to overestimate the elasticity of substitution across occupations. Introducing

the heterogeneous fluctuations in tools’ productivity across occupations, we find that

the direct measure of tool productivity is large enough to reduce the magnitude of

across-occupation elasticity close to one with smaller bounds.

Lastly, the estimate for supply elasticity, η is 2.40. This number is close to the baseline
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estimate of extensive elasticity of labor supply reported in Hsieh et al. (2019), 2, but

slightly larger than the estimate in Burstein et al. (2019), which ranges from 1.8 to

1.3.

5 Counterfactual

5.1 Procedure

The goal of the counterfactual exercise is to identify the quantitative impact of patents

on tools, i.e. changes in xot, on rising skill premium in contrast to the changes in

other demand-side residuals such as λot and αot. The following two equations, one on

relative demand and the other one on relative supply, determine within occupation

skill premium and relative employment.

log

(
wsot
wuot

)
= log

(
λot

1− λot

)
+
σ − 1

σ
(1− δ) log (xot)−

1

σ
log

(
sot
uot

)
(8)

log

(
sot
uot

)
= η log

(
wsot
wuot

)
+ η

(
εsot − εuot + log L̃st − log L̃ut

)
(9)

After estimating σ and δ, estimates for λot and εsot− εuot + log L̃st − log L̃ut
19 are given as

residuals for t = 1980 and t = 2015. We start from the values of supply and demand

shifters in 1980 and substitute xo1990 with xo2015. Then, we recalculate the within-

occupation skill premium by solving the linear equation system. The relative demand

19These four terms are not identified separately.
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and supply functions for labor across occupations are given by

log

(
wsot
ws1t

)
= log

(
λot
λ1t

αot
α1t

)
+

ρ− σ
ρ (σ − 1)

log

(
θot
θ1t

)
+
σ − 1

σ
log

(
xot
x1t

)
− 1

ρ
log

(
sot
s1t

)
(10)

log

(
sot
s1t

)
= η (logwsot + εsot − logws1t − εs1t) . (11)

As before, the values for αot/α1t and εsot−ε1ot are given as the residuals of the regressions.

We start from values of λot/λ1t, αot/α1t, θot/θ1t, and εsot−εs1t for t = 1980 and use xot/x1t

for t = 2015. Then, we solve the linear equations and compute the counterfactual

wage of skilled labor across occupations relative to the skilled labor in the baseline

occupation. From there, along with the within-occupation skill premium, we can pin

down the counterfactual wage of unskilled labor across occupations relative to the

baseline wage. Appendix D shows that this relative wage is sufficient to define the

aggregate skill premium.

5.2 Results

Scenario Pre-1980 Post-1980 Patent Only Demand Within only Across Only

Level 1.32 1.58 1.97 2.38 1.81 1.34
Relative 1 1.20 1.49 1.80 1.37 1.02

Table 13: Counterfactual Skill Premium

Table 13 shows the values for counterfactual skill premium. Between 1980-2015, the

skill premium increased by 26 percentage points. If we substitute the technological

improvements measure, xot with its value of 2015, the skill premium increases by 65

percentage points, which is more than the actual increase in the skill premium. Putting

other demand factor changes in this period, αot and λot, the counterfactual premium
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increases further by 41 percentage points. The innovation on tools accounts for 61%

of the total demand factor that contributed to the increase in the skill premium. The

supply factor, relative increases in skilled labor supply around occupations with higher

demand shocks, suppressed this increase in skilled labor.

To further decompose the impact of innovation on tools between within-occupation and

across-occupation margins, we further calculate the counterfactual skill premium when

the values of xot are substituted only in the within-occupation labor demand equation,

in the second last column of Table 13, and only in across-occupation skilled labor

demand equations in the last column of Table 13. It is the within occupation margin

that explains most increases in skill premium from innovation on tools. Since the

within-occupation demand elasticity is higher than the across-occupation, the increase

in the relative demand for skilled labor is translated into an increase in wage and

employment of skilled workers in skill-intensive occupations, which already had a higher

within-occupation skill premium, rather than a reallocation of skilled workers from low-

productivity occupations to high-productivity ones.

Moreover, the residual demand shock estimates of 1980, αo1980 and λo1980, are positively

correlated with the patent growth between 1980 and 2015, as shown in Figures 6 and 7.

This correlation supports the idea that knowledge production responds to the increase

in demand for occupational tasks. Because of the positive autocorrelation in αot and

λot at the occupation-level, the correlation between αot, λot, and xot is not zero, which

rationalizes the use of the instrumental variables, z1ot and z2ot, in the GMM estimation

above.
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Figure 6: Lambda in 1980 and Patent Growth
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Note: Log Lambda and patent growth are defined by log(λot/(1−λot))
and ∆t log(xot), respectively. The size of circles correspond to wage
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Figure 7: Alpha in 1980 and Patent Growth
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The size of circles correspond to wage bill share of occupations in
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Figure 8 shows why the residual demand components widen the wage gap between

skilled and unskilled labor. The within-occupation demand shock for skilled labor,

log(λot/(1 − λot)), for 1980, is positively correlated with the change of αot between

1980 and 2015. This implies that, even after controlling for the technological changes

through innovation on tools, occupations that had a higher demand for skilled labor

in 1980 experienced even larger increases in across-occupation relative demand and

employment share, which contributes to the historical rise in the skill premium.

Figure 8: Lambda in 1980 and Alpha Growth
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λot)) and ∆t log(λot/(1− λot)), respectively. The size of circles corre-
spond to wage bill share of occupations in 1980.

6 Conclusion

This paper measures the innovation on tools used by different occupations and studies

its effect on the aggregate skill premium. We use patent data to measure the technical

change on tools. Since patent is not naturally connected to the tools we calculate text

similarity between patent abstract and the description of tools from Wikipedia to ob-
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tain the number of relevant papers for each tool. With the innovation measure at the

occupation level, we first provide reduced form results. We show that tool innovation

grew more in skill-intensive occupations. We also show that tool innovation is positively

associated with wage, employment, skill premium, and skill intensity. This suggests

that tool innovation increases the demand for occupations, more with the skilled work-

ers. To tackle the potential endogeneity problems, we construct instrumental variables

using knowledge spillover in patent production and find similar results. Motivated by

this reduced form evidence, we build a model where the firm hires skilled and unskilled

workers for different occupations and workers choose occupations. We estimate param-

eters using GMM, and run counterfactual exercises. The result shows that 61% of the

total demand factor that contributed to the rise of skill premium can be attributed to

the tool innovation.
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Argente, David, Salomé Baslandze, Douglas Hanley, and Sara Moreira,

“Patents to products: Product innovation and firm dynamics,” FRB Atlanta Work-

ing Paper, 2020.

Autor, David H and David Dorn, “The growth of low-skill service jobs and the

polarization of the US labor market,” American Economic Review, 2013, 103 (5),

1553–97.

40



, Frank Levy, and Richard J Murnane, “The skill content of recent technological

change: An empirical exploration,” The Quarterly journal of economics, 2003, 118

(4), 1279–1333.

, Lawrence F Katz, and Melissa S Kearney, “The polarization of the US labor

market,” American economic review, 2006, 96 (2), 189–194.

Bloom, Nicholas, Tarek Alexander Hassan, Aakash Kalyani, Josh Lerner,

and Ahmed Tahoun, “The Diffusion of Disruptive Technologies,” Technical Re-

port, National Bureau of Economic Research 2021.

Burstein, Ariel, Eduardo Morales, and Jonathan Vogel, “Changes in between-

group inequality: computers, occupations, and international trade,” American Eco-

nomic Journal: Macroeconomics, 2019, 11 (2), 348–400.

Cai, Jie and Nan Li, “Growth through inter-sectoral knowledge linkages,” The Re-

view of Economic Studies, 2019, 86 (5), 1827–1866.

Caunedo, Julieta, David Jaume, and Elisa Keller, “Occupational Exposure to

Capital-Embodied Technical Change,” 2021.

Cortes, Guido Matias, Nir Jaimovich, and Henry E Siu, “Disappearing routine

jobs: Who, how, and why?,” Journal of Monetary Economics, 2017, 91, 69–87.

Dierdorff, EC, DW Drewes, and JJ Norton, “O* NET tools and technol-

ogy: A synopsis of data development procedures,” North Carolina State University.

http://www. onetcenter. org/dl files/T2Development. pdf, 2006.

Greenwood, Jeremy and Mehmet Yorukoglu, “1974,” in “Carnegie-Rochester

conference series on public policy,” Vol. 46 Elsevier 1997, pp. 49–95.

41



Hornstein, Andreas, Per Krusell, and Giovanni L Violante, “The effects of

technical change on labor market inequalities,” in “Handbook of economic growth,”

Vol. 1, Elsevier, 2005, pp. 1275–1370.

Hsieh, Chang-Tai, Erik Hurst, Charles I Jones, and Peter J Klenow, “The

allocation of talent and us economic growth,” Econometrica, 2019, 87 (5), 1439–1474.

Kelly, Bryan, Dimitris Papanikolaou, Amit Seru, and Matt Taddy, “Measur-

ing technological innovation over the long run,” Technical Report, National Bureau

of Economic Research 2018.

Kogan, Leonid, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman,

“Technological innovation, resource allocation, and growth,” The Quarterly Journal

of Economics, 2017, 132 (2), 665–712.
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Appendix

A Task-based approaches and Innovation on Tools

The innovation on tools captures a different aspect of occupation-specific shock than

task scores in Autor et al. (2006). For example, die makers and payroll clerks have sim-

ilar skill contents. Both have modest abstract scores (2.65 vs. 2.05), high routine scores

(8.17 vs. 7.95), and low manual scores (0.08 vs. 0). However, die makers had a smaller

increase in tool innovation, 1.05 log points, while payroll workers had an increase by

1.95 log points. At the same time, while the mean wage for die makers increases by 0.59

log points, the mean wage for payroll clerks grows by 0.85 log points. Skill premium

for die makers decreases by 0.93 percentage points, but skill premium for payroll clerks

increases by 3.33 percentage points. Similarly, the increases in employment and skill

intensity were modestly greater for payroll clerks than for die makers. As such, the

tools innovation measure captures a more granular dimension of skill-biased technical

changes that task-biased approaches do not.

We also study the correlation between task-based measures and our tool innovation

measure. Figure 9 shows that the innovation on tools is positively associated with

abstract task scores of occupations. Figures 10, 11 show that the innovation on tools

is negatively correlated with routine and manual task scores of the occupations. Each

circle size represents the wage bill in 1980. The task-based measure is from Autor et

al. (2006).
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Figure 9: Patent growth and abstract measure
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Notes: Task-abstract is occupation score for abstract task from Autor and Dorn (2013).
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Figure 10: Patent growth and routine measure
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Figure 11: Patent growth and manual measure
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B Robustness check

B.1 OLS with industry fixed effect

We include sector fixed effects at NAICS 3 digit level to control sector-specific shocks.

It still has a positive coefficient for wage and employment, which implies that the

tool innovation is associated with the demand factor after controlling the sector fixed

effects. However, within-occupation skill premium loses statistical significance, and

skill intensity exhibits a negative estimate.

Table 14: OLS result with industry fixed effect

∆yo,s,1980−2015 = β0 + β1∆ log po,1980−2015 + δs + εo,s

(1) (2) (3) (4)
Wage Emp. Skill Pre Skill Int.

patent 0.0300∗∗∗ 0.152∗∗∗ 0.00343 -0.00648∗∗∗

(0.00131) (0.00704) (0.00490) (0.000710)
N 18,554 18,638 14,539 19,544
sector fixed yes yes yes yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: s is sector at NAICS 3 digit level

B.2 IV with value-weighted patent

Since patents have heterogeneous values, we weight them by the monetary value mea-

sured in a way similar to Kogan et al. (2017). To be specific, we use the high-frequency

stock market data and estimate the change in stock price around the patent grant day.

Value-weighted patent measures do not change the result much. The tool innovation

is still positively correlated with the demand for labor at the occupation level and the

relative demand for skilled workers within an occupation.
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Table 15: IV result with value-weighted patents

∆yo,s,1980−2015 = β0 + β1∆ log po,1980−2015 + εo,s

(1) (2) (3) (4)
Wage Emp. Skill Pre. Skill Int.

patent (value) 0.136∗∗∗ 0.0981 0.0407∗∗∗ 0.0307∗∗∗

(0.0181) (0.0556) (0.0103) (0.00479)
N 324 324 323 324
F (first stage) 214.0 214.0 213.3 214.0
sector fixed no no no no

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Patent is weighted by market value from Kogan et al. (2017)
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C College Major Matching between ACS and DES

Each college major code in the ACS is translated into a row of the DES using the following crosswalk in Table

16.

Table 16: College Major Matching between ACS and DES

ACS DegField ACS DegField Description DES Description

11 Agriculture Agriculture and Natural Resources
13 Environment and Natural Resources Agriculture and Natural Resources
14 Architecture Architecture and Related Services
15 Area, Ethnic, and Civilization Studies Area, Ethnic, Cultural, Gender, and Group Studies
19 Communications Communication, Journalism, and Related Programs
20 Communication Technologies Communication Technologies
21 Computer and Information Sciences Computer and Information Sciences
23 Education Administration and Teaching Education
24 Engineering Engineering
25 Engineering Technologies Engineering
26 Linguistics and Foreign Languages Foreign Languages, Literatures, and Linguistics
29 Family and Consumer Sciences Family and Consumer Sciences/Human Sciences
32 Law Legal Professions and Studies
33 English Language, Literature, and Composition English Language and Literature/Letters
34 Liberal Arts and Humanities Liberal Arts and Sciences, General Studies, and Humanities
35 Library Science Library Science
36 Biology and Life Sciences Biological and Biomedical Sciences
37 Mathematics and Statistics Mathematics and Statistics
38 Military Technologies Military Technologies and Applied Sciences
40 Interdisciplinary and Multi-Disciplinary Studies Multi/Interdisciplinary Studies
41 Physical Fitness, Parks, Recreation, and Leisure Parks, Recreation,Leisure, and Fitness Studies
48 Philosophy and Religious Studies Philosophy and Religious Studies
49 Theology and Religious Vocations Theology and Religious Vocations
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ACS DegField ACS DegField Description DES Description

50 Physical Sciences Precision Production and Industrial Arts
51 Nuclear, Industrial Radiology, and Biological Technologies Biological and Biomedical Sciences
52 Psychology Psychology
53 Criminal Justice and Fire Protection Homeland Security, Law Enforcement, and Firefighting
54 Public Affairs, Policy, and Social Work Public Administration and Social Services
55 Social Sciences Social Sciences and History
56 Construction Services Engineering
57 Electrical and Mechanic Repairs and Technologies Engineering
58 Precision Production and Industrial Arts Precision Production
59 Transportation Sciences and Technologies Transportation and Materials Moving
60 Fine Arts Visual and Performing Arts
61 Medical and Health Sciences and Services Health Professions and Related Programs
62 Business Business
64 History Social Sciences and History
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D Skill Premium Decomposition and Normaliza-

tion

We show that the aggregate skill premium is determined by the wage and employment

relative to the wage and the employment of skilled labor in the baseline occupation.

Let Os the set of occupations that are populated only by skilled workers and Ou,s

the set of occupations with both types of workers. Os ∪ Ou,s = O is the entire set

of occupations, given that skilled workers are working in all occupations. Section 4.1

contains explains other notations. The skill premium can be decomposed as in the

following equation.
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This tells us that if Os = ∅, the overall skill premium is a weighted average of within-

occupation skill premium, where the weight is the product between wage bill share of

unskilled workers and the relative skill intensity.

Next, I show that the wage and the employment level relative to a wage of skilled

labor in an occupation is sufficient in determining the overall skill premium. Let this
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benchmark occupation o = 1.
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Thus, in counterfactual exercise, pinning down the relative wage and employment level

is sufficient to calculate the counterfactual skill premium.

E Innovation and Price of Tools

This appendix shows that the innovation on tools used in each occupation is likely to

reduce the price of tools. This reduction in the price of tools is a plausible channel

through which innovation on tools improves the productivity of workers.

We use the commodity-level Producer Price Index (PPI) series from the Bureau of

Labor Statistics (BLS) to measure the price of tools. The commodity code in the

BLS data is converted to the UNSPSC code used in the O*NET data using the simple

following algorithm.

1. Choose a commodity description in the PPI series.

2. From its commodity title, extract the words. Exclude generic terms such as

’Index’, ’Data’, and ’All’.

3. For each word extracted from step 2, define the specificity of each word as the

inverse of the number of occurrences in the entire set from step 1. If a word
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appears more than once in a title, count only once.

4. For each term in the set constructed step 2, count how many times it appears

in the commodity title, the class title, the family title, and the segment title of

each commodity code in the UNSPSC.

5. Sum the number calculated in step 4 over all the words extracted in step 2 after

weighting them using the specificity measure calculated in step 3. This sum

becomes the similarity score between the PPI title and the commodity item in

the UNSPSC.

6. Repeat 1-5 for all commodities in the PPI series.

7. Match each commodity item in the UNSPSC to the PPI series that gives the

highest similarity score.

Figure 12 shows that the number of patents on tools and the average PPI inflation of

tools. Please note that each circle corresponds to a SOC occupation code and the size

of the circle corresponds to the size of the occupation in 1980. Many occupations have

the same average PPI inflation on tools because the matching rate is lower and many

tools are matched to the same PPI series. Nonetheless, the number of patents at the

occupation level is associated with a lower inflation rate of the PPI, which implies that

the innovation on a tool reduces the price of that tool.
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Figure 12: Innovation on Tools and Average PPI
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We regress dependent variables of wage growth, changes in skill premium, and employ-

ment growth on the occupation-level PPI growth. The results from OLS regression

are shown in Table 17. The estimates are overall negative, although they are often

insignificant because of large measurement errors. We then use the upstream patent

instrumental variable in the same regression specification and describe the results in

Table 18. The instrumental variable approach gives a consistent estimate even with

the presence of measurement errors. The estimate is now more significant and larger in

magnitude on skill intensity and skill premium, consistent with the baseline reduced-

form regression results in Section 3. A one percent decrease in PPI of tools increases

the within-occupation skill intensity and skill premium by 0.36 and 0.18 percentage

points in columns (2) and (4) of Table 18, respectively. These effects of lower tool

prices from more innovation are robust to expanding the samples into occupations in

each sector and adding sector fixed effects on college premium and skill intensity in
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columns (6) and (8) of Table 18.
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Table 17: Impacts of PPI Growth: OLS

(1) (2) (3) (4) (5) (6) (7) (8)
Wage Col. Pre. Emp. Skill Int. Wage Col. Pre Emp. Skill Int.

PPI -0.0621 -0.0702 -0.339 -0.111∗∗∗ -0.194∗∗∗ -0.0122 -0.252∗∗∗ -0.00822∗

(0.126) (0.0478) (0.230) (0.0205) (0.0101) (0.0334) (0.0412) (0.00406)
N 145 145 145 145 13288 9660 13387 13387
sector fixed no no no no yes yes yes yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 18: Impacts of PPI Growth: IV

(1) (2) (3) (4) (5) (6) (7) (8)
Wage Col. Pre. Emp. Skill Int. Wage Col. Pre Emp. Skill Int.

PPI -0.266 -0.361∗∗∗ 0.246 -0.181∗∗∗ -0.533∗∗∗ -0.313∗∗∗ 0.0680 -0.0208∗

(0.213) (0.0900) (0.395) (0.0358) (0.0214) (0.0679) (0.0836) (0.00824)
N 145 145 145 145 13288 9660 13387 13387
F (first stage) 77.00 77.00 77.00 77.00 4208.6 3054.8 4241.0 4241.0
sector fixed no no no no yes yes yes yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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